// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/fluid/platform/device/gpu/gpu_info.h" #include "paddle/fluid/platform/device/gpu/gpu_primitives.h" #include "paddle/phi/backends/gpu/gpu_context.h" #include "paddle/phi/core/kernel_registry.h" #include "paddle/phi/kernels/funcs/math_function.h" #include "paddle/phi/kernels/pad3d_grad_kernel.h" namespace phi { using paddle::platform::PADDLE_CUDA_NUM_THREADS; template __global__ void Pad3DGradConstNCDHW(const int in_size, T* d_in_data, const int num, const int channels, const int in_depth, const int in_height, const int in_width, const int out_depth, const int out_height, const int out_width, const int pad_front, const int pad_top, const int pad_left, const T* d_out_data) { CUDA_KERNEL_LOOP(in_index, in_size) { const int in_w = in_index % in_width; int nc = in_index / in_width; const int in_h = nc % in_height; nc /= in_height; const int in_d = nc % in_depth; nc /= in_depth; const int out_d = in_d + pad_front; const int out_h = in_h + pad_top; const int out_w = in_w + pad_left; d_in_data[in_index] = d_out_data[nc * out_depth * out_height * out_width + out_d * out_height * out_width + out_h * out_width + out_w]; } } template __global__ void Pad3DGradConstNDHWC(const int in_size, T* d_in_data, const int num, const int channels, const int in_depth, const int in_height, const int in_width, const int out_depth, const int out_height, const int out_width, const int pad_front, const int pad_top, const int pad_left, const T* d_out_data) { CUDA_KERNEL_LOOP(in_index, in_size) { const int c = in_index % channels; int n = in_index / channels; const int in_w = n % in_width; n /= in_width; const int in_h = n % in_height; n /= in_height; const int in_d = n % in_depth; n /= in_depth; const int out_d = in_d + pad_front; const int out_h = in_h + pad_top; const int out_w = in_w + pad_left; d_in_data[in_index] = d_out_data[n * out_depth * out_height * out_width * channels + out_d * out_height * out_width * channels + out_h * out_width * channels + out_w * channels + c]; } } template __global__ void Pad3DGradReflectNCDHW(const int out_size, T* d_in_data, const int num, const int channels, const int in_depth, const int in_height, const int in_width, const int out_depth, const int out_height, const int out_width, const int pad_front, const int pad_top, const int pad_left, const T* d_out_data) { CUDA_KERNEL_LOOP(out_index, out_size) { int nc = out_index / out_width; const int out_w = out_index % out_width; const int out_h = nc % out_height; nc /= out_height; const int out_d = nc % out_depth; nc /= out_depth; int in_d = out_d - pad_front; int in_h = out_h - pad_top; int in_w = out_w - pad_left; in_d = max(in_d, -in_d); in_h = max(in_h, -in_h); in_w = max(in_w, -in_w); in_d = min(in_d, 2 * in_depth - in_d - 2); in_h = min(in_h, 2 * in_height - in_h - 2); in_w = min(in_w, 2 * in_width - in_w - 2); paddle::platform::CudaAtomicAdd( &d_in_data[nc * in_depth * in_height * in_width + in_d * in_height * in_width + in_h * in_width + in_w], d_out_data[out_index]); } } template __global__ void Pad3DGradReflectNDHWC(const int out_size, T* d_in_data, const int num, const int channels, const int in_depth, const int in_height, const int in_width, const int out_depth, const int out_height, const int out_width, const int pad_front, const int pad_top, const int pad_left, const T* d_out_data) { CUDA_KERNEL_LOOP(out_index, out_size) { const int c = out_index % channels; int n = out_index / channels; const int out_w = n % out_width; n /= out_width; const int out_h = n % out_height; n /= out_height; const int out_d = n % out_depth; n /= out_depth; int in_d = out_d - pad_front; int in_h = out_h - pad_top; int in_w = out_w - pad_left; in_d = max(in_d, -in_d); in_h = max(in_h, -in_h); in_w = max(in_w, -in_w); in_d = min(in_d, in_depth * 2 - in_d - 2); in_h = min(in_h, in_height * 2 - in_h - 2); in_w = min(in_w, in_width * 2 - in_w - 2); paddle::platform::CudaAtomicAdd( &d_in_data[n * in_depth * in_height * in_width * channels + in_d * in_height * in_width * channels + in_h * in_width * channels + in_w * channels + c], d_out_data[out_index]); } } template __global__ void Pad3DGradReplicateNCDHW(const int out_size, T* d_in_data, const int num, const int channels, const int in_depth, const int in_height, const int in_width, const int out_depth, const int out_height, const int out_width, const int pad_front, const int pad_top, const int pad_left, const T* d_out_data) { CUDA_KERNEL_LOOP(out_index, out_size) { int nc = out_index / out_width; const int out_w = out_index % out_width; const int out_h = nc % out_height; nc /= out_height; const int out_d = nc % out_depth; nc /= out_depth; const int in_d = min(in_depth - 1, max(out_d - pad_front, 0)); const int in_h = min(in_height - 1, max(out_h - pad_top, 0)); const int in_w = min(in_width - 1, max(out_w - pad_left, 0)); paddle::platform::CudaAtomicAdd( &d_in_data[nc * in_depth * in_height * in_width + in_d * in_height * in_width + in_h * in_width + in_w], d_out_data[out_index]); } } template __global__ void Pad3DGradReplicateNDHWC(const int out_size, T* d_in_data, const int num, const int channels, const int in_depth, const int in_height, const int in_width, const int out_depth, const int out_height, const int out_width, const int pad_front, const int pad_top, const int pad_left, const T* d_out_data) { CUDA_KERNEL_LOOP(out_index, out_size) { const int c = out_index % channels; int n = out_index / channels; const int out_w = n % out_width; n /= out_width; const int out_h = n % out_height; n /= out_height; const int out_d = n % out_depth; n /= out_depth; const int in_d = min(in_depth - 1, max(out_d - pad_front, 0)); const int in_h = min(in_height - 1, max(out_h - pad_top, 0)); const int in_w = min(in_width - 1, max(out_w - pad_left, 0)); paddle::platform::CudaAtomicAdd( &d_in_data[n * in_depth * in_height * in_width * channels + in_d * in_height * in_width * channels + in_h * in_width * channels + in_w * channels + c], d_out_data[out_index]); } } template __global__ void Pad3DGradCircularNCDHW(const int out_size, T* d_in_data, const int num, const int channels, const int in_depth, const int in_height, const int in_width, const int out_depth, const int out_height, const int out_width, const int pad_front, const int pad_top, const int pad_left, const T* d_out_data) { CUDA_KERNEL_LOOP(out_index, out_size) { int nc = out_index / out_width; const int out_w = out_index % out_width; const int out_h = nc % out_height; nc /= out_height; const int out_d = nc % out_depth; nc /= out_depth; int in_d = ((out_d - pad_front) % in_depth + in_depth) % in_depth; int in_h = ((out_h - pad_top) % in_height + in_height) % in_height; int in_w = ((out_w - pad_left) % in_width + in_width) % in_width; paddle::platform::CudaAtomicAdd( &d_in_data[nc * in_depth * in_height * in_width + in_d * in_height * in_width + in_h * in_width + in_w], d_out_data[out_index]); } } template __global__ void Pad3DGradCircularNDHWC(const int out_size, T* d_in_data, const int num, const int channels, const int in_depth, const int in_height, const int in_width, const int out_depth, const int out_height, const int out_width, const int pad_front, const int pad_top, const int pad_left, const T* d_out_data) { CUDA_KERNEL_LOOP(out_index, out_size) { const int c = out_index % channels; int n = out_index / channels; const int out_w = n % out_width; n /= out_width; const int out_h = n % out_height; n /= out_height; const int out_d = n % out_depth; n /= out_depth; int in_d = ((out_d - pad_front) % in_depth + in_depth) % in_depth; int in_h = ((out_h - pad_top) % in_height + in_height) % in_height; int in_w = ((out_w - pad_left) % in_width + in_width) % in_width; paddle::platform::CudaAtomicAdd( &d_in_data[n * in_depth * in_height * in_width * channels + in_d * in_height * in_width * channels + in_h * in_width * channels + in_w * channels + c], d_out_data[out_index]); } } template void Pad3dGradKernel(const Context& dev_ctx, const DenseTensor& x, const DenseTensor& out_grad, const IntArray& paddings, const std::string& mode, float pad_value, const std::string& data_format, DenseTensor* x_grad) { std::vector pads = paddings.GetData(); auto* d_out = &out_grad; auto* d_in = x_grad; auto d_in_dims = d_in->dims(); auto d_out_dims = d_out->dims(); const T* d_out_data = d_out->data(); T* d_in_data = dev_ctx.template Alloc(d_in); phi::funcs::SetConstant()(dev_ctx, d_in, static_cast(0)); const int pad_left = pads[0]; const int pad_top = pads[2]; const int pad_front = pads[4]; const int num = d_in_dims[0]; auto stream = dev_ctx.stream(); int block = PADDLE_CUDA_NUM_THREADS; const int out_size = d_out->numel(); const int in_size = d_in->numel(); int grid = (out_size + block - 1) / block; if (data_format == "NCDHW") { const int channels = d_in_dims[1]; const int in_depth = d_in_dims[2]; const int in_height = d_in_dims[3]; const int in_width = d_in_dims[4]; const int out_depth = d_out_dims[2]; const int out_height = d_out_dims[3]; const int out_width = d_out_dims[4]; if (mode == "reflect") { Pad3DGradReflectNCDHW<<>>(out_size, d_in_data, num, channels, in_depth, in_height, in_width, out_depth, out_height, out_width, pad_front, pad_top, pad_left, d_out_data); } else if (mode == "replicate") { Pad3DGradReplicateNCDHW<<>>(out_size, d_in_data, num, channels, in_depth, in_height, in_width, out_depth, out_height, out_width, pad_front, pad_top, pad_left, d_out_data); } else if (mode == "circular") { Pad3DGradCircularNCDHW<<>>(out_size, d_in_data, num, channels, in_depth, in_height, in_width, out_depth, out_height, out_width, pad_front, pad_top, pad_left, d_out_data); } else { grid = (in_size + block - 1) / block; Pad3DGradConstNCDHW<<>>(in_size, d_in_data, num, channels, in_depth, in_height, in_width, out_depth, out_height, out_width, pad_front, pad_top, pad_left, d_out_data); } } else { const int channels = d_in_dims[4]; const int in_depth = d_in_dims[1]; const int in_height = d_in_dims[2]; const int in_width = d_in_dims[3]; const int out_depth = d_out_dims[1]; const int out_height = d_out_dims[2]; const int out_width = d_out_dims[3]; if (mode == "reflect") { Pad3DGradReflectNDHWC<<>>(out_size, d_in_data, num, channels, in_depth, in_height, in_width, out_depth, out_height, out_width, pad_front, pad_top, pad_left, d_out_data); } else if (mode == "replicate") { Pad3DGradReplicateNDHWC<<>>(out_size, d_in_data, num, channels, in_depth, in_height, in_width, out_depth, out_height, out_width, pad_front, pad_top, pad_left, d_out_data); } else if (mode == "circular") { Pad3DGradCircularNDHWC<<>>(out_size, d_in_data, num, channels, in_depth, in_height, in_width, out_depth, out_height, out_width, pad_front, pad_top, pad_left, d_out_data); } else { grid = (in_size + block - 1) / block; Pad3DGradConstNDHWC<<>>(in_size, d_in_data, num, channels, in_depth, in_height, in_width, out_depth, out_height, out_width, pad_front, pad_top, pad_left, d_out_data); } } } } // namespace phi PD_REGISTER_KERNEL( pad3d_grad, GPU, ALL_LAYOUT, phi::Pad3dGradKernel, float, double) {}