# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import re import yaml from api_base import PREFIX_TENSOR_NAME, BaseAPI inplace_out_type_map = { "Tensor": "Tensor&", "std::vector": "std::vector&", } inplace_optional_out_type_map = { "Tensor": "paddle::optional&", "std::vector": "paddle::optional>&", } class ForwardAPI(BaseAPI): def __init__(self, api_item_yaml): super().__init__(api_item_yaml) self.is_dygraph_api, self.intermediate_outs = self.parse_intermediate( api_item_yaml ) self.inplace_map, self.view_map = self.parse_inplace_and_view( api_item_yaml ) def get_api_func_name(self): if self.is_dygraph_api: return self.api + '_intermediate' else: return self.api def gene_input(self, kernel_tensor_type=None, code_indent=''): kernel_param = self.kernel['param'] input_name_tensor_map, input_tensor_code = super().gene_input( kernel_tensor_type, code_indent ) # generate the input that is in view list for i, input_name in enumerate(self.inputs['names']): if ( input_name in self.view_map.values() and input_name not in input_name_tensor_map.keys() ): if ( kernel_tensor_type is None or kernel_tensor_type[0][kernel_param.index(input_name)] == 'dense' ): trans_flag = self.gene_trans_flag(input_name) input_tensor_code = ( input_tensor_code + f""" {code_indent} auto {PREFIX_TENSOR_NAME}{input_name} = PrepareData({input_name}, kernel.InputAt(0), {trans_flag});""" ) else: # do nothing pass return input_name_tensor_map, input_tensor_code def parse_intermediate(self, api_item_yaml): if 'intermediate' in api_item_yaml: intermediate_outs = [ item.strip() for item in api_item_yaml['intermediate'].split(',') ] return True, intermediate_outs else: return False, [] def parse_inplace_and_view(self, api_item_yaml): inplace_map, view_map = {}, {} for mode in ['inplace', 'view']: if mode in api_item_yaml: if mode == 'inplace': inplace_map = {} else: view_map = {} in_out_mapping_list = api_item_yaml[mode].split(',') for item in in_out_mapping_list: result = re.search(r"(?P\w+)\s*->\s*(?P\w+)", item) in_val = result.group('in') out_val = result.group('out') assert ( in_val in self.inputs['names'] ), f"{self.api} : {mode} input error: the input var name('{in_val}') is not found in the input args of {self.api}." assert ( out_val in self.outputs['names'] ), f"{self.api} : {mode} output error: the output var name('{out_val}') is not found in the output args of {self.api}." if mode == 'inplace': inplace_map[out_val] = in_val else: view_map[out_val] = in_val return inplace_map, view_map def get_return_type_with_intermediate(self, inplace_flag=False): out_type_list = [] for i, out_type in enumerate(self.outputs['types']): out_name = self.outputs['names'][i].split('@')[0] if inplace_flag and out_name in self.inplace_map: if self.inplace_map[out_name] in self.optional_vars: out_type_list.append( inplace_optional_out_type_map[out_type] ) else: out_type_list.append(inplace_out_type_map[out_type]) else: out_type_list.append(out_type) if len(out_type_list) == 1: return out_type_list[0] else: return "std::tuple<" + ", ".join(out_type_list) + ">" def get_return_type(self, inplace_flag=False): out_type_list = [] for i, out_type in enumerate(self.outputs['types']): out_name = self.outputs['names'][i].split('@')[0] if inplace_flag and out_name in self.inplace_map: if self.inplace_map[out_name] in self.optional_vars: out_type_list.append( inplace_optional_out_type_map[out_type] ) else: out_type_list.append(inplace_out_type_map[out_type]) elif self.is_dygraph_api or out_name not in self.intermediate_outs: out_type_list.append(out_type) if len(out_type_list) == 1: return out_type_list[0] else: return "std::tuple<" + ", ".join(out_type_list) + ">" def gene_return_code(self): if self.is_dygraph_api or len(self.intermediate_outs) == 0: return "return api_output;" else: return_out_list = [] for i, name in enumerate(self.outputs['names']): if name.split('@')[0] not in self.intermediate_outs: return_out_list.append(i) if len(return_out_list) == 1: return f"return std::get<{return_out_list[0]}>(api_output);" else: selected_code = [ f"std::get<{i}>(api_output)" for i in return_out_list ] return 'return std::make_tuple(' + ", ".join(selected_code) + ');' def gene_output( self, out_dtype_list, out_tensor_type_list=None, code_indent='', inplace_flag=False, ): kernel_output = [] output_names = [] output_create = "" return_type = self.get_return_type_with_intermediate(inplace_flag) if len(out_dtype_list) == 1: kernel_output.append('kernel_out') output_names.append('kernel_out') inplace_assign = ( " = " + self.inplace_map[self.outputs['names'][0]] if inplace_flag and self.outputs['names'][0] in self.inplace_map else "" ) output_create = f""" {code_indent} {return_type} api_output{inplace_assign};""" set_out_func = ( 'SetKernelOutput' if out_tensor_type_list is None or out_tensor_type_list[0] == 'dense' else 'SetSelectedRowsKernelOutput' ) if return_type == 'std::vector': assert ( self.outputs['out_size_expr'][0] is not None ), f"{self.api}: The out size expr : '{{expr}}' should be set when output has Tensor[]. You can refer 'split' api." output_create = ( output_create + f""" {code_indent} auto kernel_out = {set_out_func}({self.outputs['out_size_expr'][0]}, &api_output);""" ) else: output_create = ( output_create + f""" {code_indent} auto kernel_out = {set_out_func}(&api_output);""" ) if ( not inplace_flag and self.view_map is not None and self.outputs['names'][0] in self.view_map ): output_create = ( output_create + f""" {code_indent} kernel_out->ShareBufferWith(*{PREFIX_TENSOR_NAME}{self.view_map[self.outputs['names'][0]]}); {code_indent} kernel_out->ShareInplaceVersionCounterWith(*{PREFIX_TENSOR_NAME}{self.view_map[self.outputs['names'][0]]}); {code_indent} VLOG(3) << "Perform View between Output and Input Tensor, share allocation and inplace version.";""" ) elif len(out_dtype_list) > 1: output_create = f""" {code_indent} {return_type} api_output;""" if inplace_flag: output_create = f""" {code_indent} {return_type} api_output{{""" for out_name in self.outputs['names']: if out_name in self.inplace_map: output_create += self.inplace_map[out_name] + ', ' else: output_create += 'Tensor(), ' output_create = output_create[:-2] + '};' for i in range(len(out_dtype_list)): kernel_output.append(f'kernel_out_{i}') output_names.append(f'kernel_out_{i}') set_out_func = ( 'SetKernelOutput' if out_tensor_type_list is None or out_tensor_type_list[i] == 'dense' else 'SetSelectedRowsKernelOutput' ) get_out_code = f"&std::get<{i}>(api_output)" if ( self.outputs['names'][i] in self.inplace_map and self.inplace_map[self.outputs['names'][i]] in self.optional_vars ): get_out_code = f"std::get<{i}>(api_output).get_ptr()" if out_dtype_list[i] == 'std::vector': assert ( self.outputs['out_size_expr'][i] is not None ), f"{self.api}: The out size expr : '{{expr}}' should be set when output has Tensor[]. You can refer 'split' api." # Special case for inplace vector and inplace optional if self.outputs['names'][i] in self.inplace_map: set_out_func = "SetInplaceVectorKernelOutput" if ( self.inplace_map[self.outputs['names'][i]] in self.optional_vars ): set_out_func = ( "SetInplaceOptionalVectorKernelOutput" ) get_out_code = f"std::get<{i}>(api_output)" output_create = ( output_create + f""" {code_indent} auto kernel_out_{i} = {set_out_func}({self.outputs['out_size_expr'][i]}, {get_out_code});""" ) else: output_create = ( output_create + f""" {code_indent} auto kernel_out_{i} = {set_out_func}({get_out_code});""" ) if ( not inplace_flag and self.view_map is not None and self.outputs['names'][i] in self.view_map ): if out_dtype_list[i] == 'Tensor': output_create = ( output_create + f""" {code_indent} kernel_out_{i}->ShareBufferWith(*{PREFIX_TENSOR_NAME}{self.view_map[self.outputs['names'][i]]}); {code_indent} kernel_out_{i}->ShareInplaceVersionCounterWith(*{PREFIX_TENSOR_NAME}{self.view_map[self.outputs['names'][i]]}); {code_indent} VLOG(3) << "Perform View between Output and Input Tensor, share allocation and inplace version.";""" ) else: raise ValueError( "{} : Output error: only support Tensor type when use view in yaml. But get {}".format( self.api, out_dtype_list[i] ) ) else: raise ValueError( "{} : Output error: the output should not be empty.".format( self.api ) ) return kernel_output, output_names, output_create def header_include(): return """ #include #include "paddle/phi/api/include/tensor.h" #include "paddle/phi/common/scalar.h" #include "paddle/phi/common/int_array.h" #include "paddle/utils/optional.h" """ def source_include(header_file_path): return f""" #include "{header_file_path}" #include #include "glog/logging.h" #include "paddle/phi/api/lib/api_custom_impl.h" #include "paddle/phi/api/lib/api_gen_utils.h" #include "paddle/phi/api/lib/data_transform.h" #include "paddle/phi/api/lib/kernel_dispatch.h" #include "paddle/phi/common/type_traits.h" #include "paddle/phi/core/kernel_registry.h" #include "paddle/phi/infermeta/binary.h" #include "paddle/phi/infermeta/multiary.h" #include "paddle/phi/infermeta/nullary.h" #include "paddle/phi/infermeta/unary.h" #include "paddle/phi/infermeta/ternary.h" #include "paddle/fluid/platform/profiler/event_tracing.h" #include "paddle/fluid/platform/profiler/supplement_tracing.h" DECLARE_bool(conv2d_disable_cudnn); """ def api_namespace(): return ( """ namespace paddle { namespace experimental { """, """ } // namespace experimental } // namespace paddle """, ) def generate_api(api_yaml_path, header_file_path, source_file_path): apis = [] for each_api_yaml in api_yaml_path: with open(each_api_yaml, 'r') as f: api_list = yaml.load(f, Loader=yaml.FullLoader) if api_list: apis.extend(api_list) header_file = open(header_file_path, 'w') source_file = open(source_file_path, 'w') namespace = api_namespace() header_file.write("#pragma once\n") header_file.write(header_include()) header_file.write(namespace[0]) include_header_file = "paddle/phi/api/include/api.h" source_file.write(source_include(include_header_file)) source_file.write(namespace[0]) for api in apis: foward_api = ForwardAPI(api) if foward_api.is_dygraph_api: foward_api.is_dygraph_api = False header_file.write(foward_api.gene_api_declaration()) source_file.write(foward_api.gene_api_code()) header_file.write(namespace[1]) source_file.write(namespace[1]) header_file.close() source_file.close() def main(): parser = argparse.ArgumentParser( description='Generate PaddlePaddle C++ API files' ) parser.add_argument( '--api_yaml_path', help='path to api yaml file', nargs='+', default=['paddle/phi/api/yaml/ops.yaml'], ) parser.add_argument( '--api_header_path', help='output of generated api header code file', default='paddle/phi/api/include/api.h', ) parser.add_argument( '--api_source_path', help='output of generated api source code file', default='paddle/phi/api/lib/api.cc', ) options = parser.parse_args() api_yaml_path = options.api_yaml_path header_file_path = options.api_header_path source_file_path = options.api_source_path generate_api(api_yaml_path, header_file_path, source_file_path) if __name__ == '__main__': main()