# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import contextlib import unittest import numpy as np import paddle.fluid as fluid from paddle.fluid import core from paddle.fluid import Linear from test_imperative_base import new_program_scope class MyLayer(fluid.Layer): def __init__(self): super(MyLayer, self).__init__() def forward(self, inputs): x = fluid.layers.relu(inputs) self._x_for_debug = x x = fluid.layers.elementwise_mul(x, x) x = fluid.layers.reduce_sum(x) return [x] class MLP(fluid.Layer): def __init__(self, input_size): super(MLP, self).__init__() self._linear1 = None self._linear1 = Linear( input_size, 3, param_attr=fluid.ParamAttr( initializer=fluid.initializer.Constant(value=0.1)), bias_attr=fluid.ParamAttr( initializer=fluid.initializer.Constant(value=0.1))) self._linear2 = Linear( 3, 4, param_attr=fluid.ParamAttr( initializer=fluid.initializer.Constant(value=0.1)), bias_attr=fluid.ParamAttr( initializer=fluid.initializer.Constant(value=0.1))) def forward(self, inputs): x = self._linear1(inputs) x = self._linear2(x) x = fluid.layers.reduce_sum(x) return x class SimpleRNNCell(fluid.Layer): def __init__(self, step_input_size, hidden_size, output_size, param_attr): super(SimpleRNNCell, self).__init__() self.step_input_size = step_input_size self.hidden_size = hidden_size self.output_size = output_size self._dtype = core.VarDesc.VarType.FP32 self.param_attr = param_attr i2h_param_shape = [self.step_input_size, self.hidden_size] h2h_param_shape = [self.hidden_size, self.hidden_size] h2o_param_shape = [self.output_size, self.hidden_size] self._i2h_w = None self._i2h_w = self.create_parameter( attr=self.param_attr, shape=i2h_param_shape, dtype=self._dtype, is_bias=False) self._h2h_w = self.create_parameter( attr=self.param_attr, shape=h2h_param_shape, dtype=self._dtype, is_bias=False) self._h2o_w = self.create_parameter( attr=self.param_attr, shape=h2o_param_shape, dtype=self._dtype, is_bias=False) def forward(self, input, pre_hidden): tmp_i2h = self.create_variable(dtype=self._dtype) tmp_h2h = self.create_variable(dtype=self._dtype) hidden = self.create_variable(dtype=self._dtype) out = self.create_variable(dtype=self._dtype) softmax_out = self.create_variable(dtype=self._dtype) reduce_out = self.create_variable(dtype=self._dtype) self._helper.append_op( type="mul", inputs={"X": input, "Y": self._i2h_w}, outputs={"Out": tmp_i2h}, attrs={"x_num_col_dims": 1, "y_num_col_dims": 1}) self._helper.append_op( type="mul", inputs={"X": pre_hidden, "Y": self._h2h_w}, outputs={"Out": tmp_h2h}, attrs={"x_num_col_dims": 1, "y_num_col_dims": 1}) self._helper.append_op( type="elementwise_add", inputs={'X': tmp_h2h, 'Y': tmp_i2h}, outputs={'Out': hidden}, attrs={'axis': -1, 'use_mkldnn': False}) hidden = self._helper.append_activation(hidden, act='tanh') self._helper.append_op( type="mul", inputs={"X": hidden, "Y": self._h2o_w}, outputs={"Out": out}, attrs={"x_num_col_dims": 1, "y_num_col_dims": 1}) self._helper.append_op( type="softmax", inputs={"X": out}, outputs={"Out": softmax_out}, attrs={"use_cudnn": False}) self._helper.append_op( type='reduce_sum', inputs={'X': softmax_out}, outputs={'Out': reduce_out}, attrs={'keep_dim': False, 'reduce_all': True}) return reduce_out, hidden class SimpleRNN(fluid.Layer): def __init__(self): super(SimpleRNN, self).__init__() self.seq_len = 4 self._cell = SimpleRNNCell( 3, 3, 3, fluid.ParamAttr(initializer=fluid.initializer.Constant(value=0.1))) def forward(self, inputs): outs = list() pre_hiddens = list() init_hidden = self.create_parameter( attr=fluid.ParamAttr( initializer=fluid.initializer.Constant(value=0.1)), shape=[1, 3], dtype='float32', is_bias=False) pre_hidden = init_hidden for i in range(self.seq_len): input = fluid.layers.slice( inputs, axes=[1], starts=[i], ends=[i + 1]) input = fluid.layers.reshape(input, shape=[1, 3]) out_softmax, pre_hidden = self._cell(input, pre_hidden) outs.append(out_softmax) return outs, pre_hiddens class TestImperative(unittest.TestCase): def test_isinstance(self): var = fluid.layers.data(shape=[1], name='x', dtype='float32') self.assertTrue(isinstance(var, fluid.Variable)) with fluid.dygraph.guard(): var_base = fluid.dygraph.base.to_variable(np.array([3, 4, 5])) self.assertTrue(isinstance(var_base, core.VarBase)) self.assertTrue(isinstance(var_base, fluid.Variable)) def test_create_VarBase(self): x = np.ones([2, 2], np.float32) y = np.zeros([3, 3], np.float32) with fluid.dygraph.guard(): tmp = fluid.core.VarBase(value=x, place=fluid.core.CPUPlace()) tmp2 = fluid.core.VarBase(y, fluid.core.CPUPlace()) tmp3 = fluid.dygraph.base.to_variable(x) tmp4 = fluid.core.VarBase(y) tmp5 = fluid.core.VarBase(value=x) self.assertTrue(np.array_equal(x, tmp.numpy())) self.assertTrue(np.array_equal(y, tmp2.numpy())) self.assertTrue(np.array_equal(x, tmp3.numpy())) self.assertTrue(np.array_equal(y, tmp4.numpy())) self.assertTrue(np.array_equal(x, tmp5.numpy())) def test_sum_op(self): x = np.ones([2, 2], np.float32) with fluid.dygraph.guard(): inputs = [] for _ in range(10): tmp = fluid.dygraph.base.to_variable(x) tmp.stop_gradient = False inputs.append(tmp) ret = fluid.layers.sums(inputs) loss = fluid.layers.reduce_sum(ret) loss.backward() with fluid.dygraph.guard(): inputs2 = [] for _ in range(10): tmp = fluid.dygraph.base.to_variable(x) tmp.stop_gradient = False inputs2.append(tmp) ret2 = fluid.layers.sums(inputs2) loss2 = fluid.layers.reduce_sum(ret2) backward_strategy = fluid.dygraph.BackwardStrategy() backward_strategy.sort_sum_gradient = True loss2.backward(backward_strategy) self.assertTrue(np.allclose(ret.numpy(), x * 10)) self.assertTrue(np.allclose(inputs[0].gradient(), x)) self.assertTrue(np.allclose(ret2.numpy(), x * 10)) a = inputs2[0].gradient() self.assertTrue(np.allclose(inputs2[0].gradient(), x)) def test_empty_var(self): with fluid.dygraph.guard(): cur_program = fluid.Program() cur_block = cur_program.current_block() new_variable = cur_block.create_var( name="X", shape=[-1, 23, 48], dtype='float32') try: new_variable.numpy() except Exception as e: assert type(e) == core.EnforceNotMet try: new_variable.backward() except Exception as e: assert type(e) == core.EnforceNotMet try: new_variable.clear_gradient() except Exception as e: assert type(e) == core.EnforceNotMet def test_empty_grad(self): with fluid.dygraph.guard(): x = np.ones([2, 2], np.float32) new_var = fluid.dygraph.base.to_variable(x) try: new_var.gradient() except Exception as e: assert type(e) == ValueError try: new_var.clear_gradient() except Exception as e: assert type(e) == core.EnforceNotMet with fluid.dygraph.guard(): cur_program = fluid.Program() cur_block = cur_program.current_block() new_variable = cur_block.create_var( name="X", shape=[-1, 23, 48], dtype='float32') try: new_variable.gradient() except Exception as e: assert type(e) == ValueError def test_set_persistable(self): with fluid.dygraph.guard(): x = np.ones([2, 2], np.float32) new_var = fluid.dygraph.base.to_variable(x) self.assertFalse(new_var.persistable) new_var.persistable = True self.assertTrue(new_var.persistable) def test_layer(self): with fluid.dygraph.guard(): cl = core.Layer() cl.forward([]) l = fluid.Layer("l") self.assertRaises(NotImplementedError, l.forward, []) def test_layer_in_out(self): np_inp = np.array([1.0, 2.0, -1.0], dtype=np.float32) with fluid.dygraph.guard(): var_inp = fluid.dygraph.base.to_variable(np_inp) var_inp.stop_gradient = False l = MyLayer() print(var_inp) x = l(var_inp)[0] self.assertIsNotNone(x) dy_out = x.numpy() x.backward() dy_grad = l._x_for_debug.gradient() with fluid.dygraph.guard(): var_inp2 = fluid.dygraph.base.to_variable(np_inp) var_inp2.stop_gradient = False l2 = MyLayer() x2 = l2(var_inp2)[0] self.assertIsNotNone(x2) dy_out2 = x2.numpy() backward_strategy = fluid.dygraph.BackwardStrategy() backward_strategy.sort_sum_gradient = True x2.backward(backward_strategy) dy_grad2 = l2._x_for_debug.gradient() with new_program_scope(): inp = fluid.layers.data( name="inp", shape=[3], append_batch_size=False) l = MyLayer() x = l(inp)[0] param_grads = fluid.backward.append_backward( x, parameter_list=[l._x_for_debug.name])[0] exe = fluid.Executor(fluid.CPUPlace( ) if not core.is_compiled_with_cuda() else fluid.CUDAPlace(0)) static_out, static_grad = exe.run( feed={inp.name: np_inp}, fetch_list=[x.name, param_grads[1].name]) self.assertTrue(np.allclose(dy_out, static_out)) self.assertTrue(np.allclose(dy_grad, static_grad)) self.assertTrue(np.allclose(dy_out2, static_out)) self.assertTrue(np.allclose(dy_grad2, static_grad)) def test_mlp(self): np_inp = np.array([[1.0, 2.0], [3.0, 4.0]], dtype=np.float32) with fluid.dygraph.guard(): var_inp = fluid.dygraph.base.to_variable(np_inp) mlp = MLP(input_size=2) out = mlp(var_inp) dy_out = out.numpy() out.backward() dy_grad = mlp._linear1.weight.gradient() with fluid.dygraph.guard(): var_inp2 = fluid.dygraph.base.to_variable(np_inp) mlp2 = MLP(input_size=2) out2 = mlp2(var_inp2) dy_out2 = out2.numpy() backward_strategy = fluid.dygraph.BackwardStrategy() backward_strategy.sort_sum_gradient = True out2.backward(backward_strategy) dy_grad2 = mlp2._linear1.weight.gradient() with new_program_scope(): inp = fluid.layers.data( name="inp", shape=[2, 2], append_batch_size=False) mlp = MLP(input_size=2) out = mlp(inp) param_grads = fluid.backward.append_backward( out, parameter_list=[mlp._linear1.weight.name])[0] exe = fluid.Executor(fluid.CPUPlace( ) if not core.is_compiled_with_cuda() else fluid.CUDAPlace(0)) exe.run(fluid.default_startup_program()) static_out, static_grad = exe.run( feed={inp.name: np_inp}, fetch_list=[out.name, param_grads[1].name]) self.assertTrue(np.allclose(dy_out, static_out)) self.assertTrue(np.allclose(dy_grad, static_grad)) self.assertTrue(np.allclose(dy_out2, static_out)) self.assertTrue(np.allclose(dy_grad2, static_grad)) params = mlp.parameters(True) self.assertEqual("linear_0.w_0", params[0].name) self.assertEqual("linear_0.b_0", params[1].name) self.assertEqual("linear_1.w_0", params[2].name) self.assertEqual("linear_1.b_0", params[3].name) self.assertEqual(len(params), 4) sublayers = mlp.sublayers(True) self.assertEqual(mlp._linear1, sublayers[0]) self.assertEqual(mlp._linear2, sublayers[1]) self.assertEqual(len(sublayers), 2) def test_dygraph_vs_static(self): np_inp1 = np.random.rand(4, 3, 3) np_inp2 = np.random.rand(4, 3, 3) # dynamic graph with fluid.dygraph.guard(): inp1 = fluid.dygraph.to_variable(np_inp1) inp2 = fluid.dygraph.to_variable(np_inp2) if np.sum(np_inp1) < np.sum(np_inp2): x = fluid.layers.elementwise_add(inp1, inp2) else: x = fluid.layers.elementwise_sub(inp1, inp2) dygraph_result = x.numpy() # static graph with new_program_scope(): inp_data1 = fluid.layers.data( name='inp1', shape=[3, 3], dtype=np.float32) inp_data2 = fluid.layers.data( name='inp2', shape=[3, 3], dtype=np.float32) a = fluid.layers.expand( fluid.layers.reshape( fluid.layers.reduce_sum(inp_data1), [1, 1]), [4, 1]) b = fluid.layers.expand( fluid.layers.reshape( fluid.layers.reduce_sum(inp_data2), [1, 1]), [4, 1]) cond = fluid.layers.less_than(x=a, y=b) ie = fluid.layers.IfElse(cond) with ie.true_block(): d1 = ie.input(inp_data1) d2 = ie.input(inp_data2) d3 = fluid.layers.elementwise_add(d1, d2) ie.output(d3) with ie.false_block(): d1 = ie.input(inp_data1) d2 = ie.input(inp_data2) d3 = fluid.layers.elementwise_sub(d1, d2) ie.output(d3) out = ie() exe = fluid.Executor(fluid.CPUPlace( ) if not core.is_compiled_with_cuda() else fluid.CUDAPlace(0)) static_result = exe.run(fluid.default_main_program(), feed={'inp1': np_inp1, 'inp2': np_inp2}, fetch_list=out)[0] self.assertTrue(np.allclose(dygraph_result, static_result)) def test_rnn(self): np_inp = np.array([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0], [7.0, 8.0, 9.0], [10.0, 11.0, 12.0]]) np_inp = np_inp.reshape((1, 4, 3)) np_inp = np_inp.astype(np.float32) with fluid.dygraph.guard(): var_inp = fluid.dygraph.base.to_variable(np_inp) var_inp = fluid.layers.reshape(var_inp, shape=[1, 4, 3]) simple_rnn = SimpleRNN() outs, pre_hiddens = simple_rnn.forward(var_inp) dy_out = outs[3].numpy() outs[3].backward() dy_grad_h2o = simple_rnn._cell._h2o_w.gradient() dy_grad_h2h = simple_rnn._cell._h2h_w.gradient() dy_grad_i2h = simple_rnn._cell._i2h_w.gradient() with fluid.dygraph.guard(): var_inp2 = fluid.dygraph.base.to_variable(np_inp) var_inp2 = fluid.layers.reshape(var_inp2, shape=[1, 4, 3]) simple_rnn2 = SimpleRNN() outs2, pre_hiddens2 = simple_rnn2.forward(var_inp2) dy_out2 = outs2[3].numpy() backward_strategy = fluid.dygraph.BackwardStrategy() backward_strategy.sort_sum_gradient = True outs2[3].backward(backward_strategy) dy_grad_h2o2 = simple_rnn2._cell._h2o_w.gradient() dy_grad_h2h2 = simple_rnn2._cell._h2h_w.gradient() dy_grad_i2h2 = simple_rnn2._cell._i2h_w.gradient() with new_program_scope(): inp = fluid.layers.data( name="inp", shape=[1, 4, 3], append_batch_size=False) simple_rnn = SimpleRNN() outs, pre_hiddens = simple_rnn(inp) param_grads = fluid.backward.append_backward(outs[3]) exe = fluid.Executor(fluid.CPUPlace()) exe.run(fluid.default_startup_program()) static_out, static_grad_h2o, static_grad_h2h, static_grad_i2h = exe.run( feed={inp.name: np_inp}, fetch_list=[ outs[3].name, param_grads[0][1].name, param_grads[1][1].name, param_grads[2][1].name ]) self.assertTrue(np.allclose(dy_out, static_out)) self.assertTrue(np.allclose(dy_grad_h2o, static_grad_h2o)) self.assertTrue(np.allclose(dy_grad_h2h, static_grad_h2h)) self.assertTrue(np.allclose(dy_grad_i2h, static_grad_i2h)) self.assertTrue(np.allclose(dy_out2, static_out)) self.assertTrue(np.allclose(dy_grad_h2o2, static_grad_h2o)) self.assertTrue(np.allclose(dy_grad_h2h2, static_grad_h2h)) self.assertTrue(np.allclose(dy_grad_i2h2, static_grad_i2h)) def test_layer_attrs(self): layer = fluid.dygraph.Layer("test") layer.test_attr = 1 self.assertFalse(hasattr(layer, "whatever")) self.assertTrue(hasattr(layer, "test_attr")) self.assertEqual(layer.test_attr, 1) if __name__ == '__main__': unittest.main()