// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/pten/kernels/xpu/manipulation.h" #include "paddle/pten/infermeta/unary.h" #include "paddle/pten/kernels/hybird/general/manipulation.h" #include "paddle/pten/kernels/xpu/utils.h" namespace pten { template void Flatten(const XPUContext& dev_ctx, const DenseTensor& x, int start_axis, int stop_axis, DenseTensor* out) { auto out_dims = out->dims(); pten::Copy(dev_ctx, x, false, out); out->Resize(out_dims); } // TODO(yuanrisheng): this kernel is for training and xshape is a Intermediate // Output Tensor, // is there a more flexible way to deal with this case? template void FlattenWithXShape(const XPUContext& dev_ctx, const DenseTensor& x, int start_axis, int stop_axis, DenseTensor* out, DenseTensor* xshape) { Flatten(dev_ctx, x, start_axis, stop_axis, out); const auto& in_dims = x.dims(); std::vector xshape_dims(in_dims.size() + 1); xshape_dims[0] = 0; for (int i = 0; i < in_dims.size(); ++i) { xshape_dims[i + 1] = in_dims[i]; } xshape->Resize(paddle::framework::make_ddim(xshape_dims)); xshape->ResetLoD(x.lod()); } void ReshapeFromVectorVal(const XPUContext& dev_ctx, const DenseTensor& x, const std::vector& shape, DenseTensor* out) { auto out_meta = InferMetaFromVecValue(x.meta(), shape); if (&x == out) { out->Resize(out_meta.dims); return; } pten::Copy(dev_ctx, x, false, out); out->Resize(out_meta.dims); } void ReshapeFromDT(const XPUContext& dev_ctx, const DenseTensor& x, const DenseTensor& shape, DenseTensor* out) { auto* shape_data = shape.data(); auto vector_shape = std::vector(shape_data, shape_data + shape.numel()); ReshapeFromVectorVal(dev_ctx, x, vector_shape, out); } void ReshapeFromVectorDT(const XPUContext& dev_ctx, const DenseTensor& x, const std::vector& shape, DenseTensor* out) { std::vector vector_shape; for (auto& tensor : shape) { PADDLE_ENFORCE_EQ( tensor.dims(), paddle::framework::make_ddim({1}), paddle::platform::errors::InvalidArgument( "If the element type of 'shape' in ReshapeOp is Tensor, " "the element's shape must be [1]. But received the element's shape " "is [%s]", tensor.dims())); vector_shape.push_back(*tensor.data()); } ReshapeFromVectorVal(dev_ctx, x, vector_shape, out); } } // namespace pten // TODO(chenweihang): replace by better impl PT_REGISTER_MODULE(ManipulationXPU); // TODO(yuanrisheng): "flatten_contiguous_range" is compatible with old kernel // architecture, kernel_name should be "flatten". PT_REGISTER_KERNEL("flatten_contiguous_range", XPU, ANY, pten::Flatten, float, paddle::platform::float16, double, uint8_t, int8_t, int, int64_t) {} PT_REGISTER_KERNEL("flatten_contiguous_range.mid", XPU, ANY, pten::FlattenWithXShape, float, paddle::platform::float16, double, uint8_t, int8_t, int, int64_t) {} // TODO(yuanrisheng): "reshape2" is compatible with old kernel // architecture, kernel_name should be "reshape". PT_REGISTER_KERNEL_WITH_NO_TYPE("reshape2", XPU, ANY, pten::ReshapeFromVectorVal) {}