# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import paddle from paddle.fluid import core __all__ = [] def with_mateclass(meta, *bases): class impl(meta): def __new__(cls, name, temp_bases, attrs): return meta(name, bases, attrs) return type.__new__(impl, "impl", (), {}) class PyLayerContext: """ ``PyLayerContext`` can assist the :ref:`api_paddle_autograd_PyLayer` in implementing certain functionalities. """ def save_for_backward(self, *tensors): """ Saves given tensors that backward need. Use ``saved_tensor`` in the `backward` to get the saved tensors. Note: This API should be called at most once, and only inside `forward`. Args: tensors(list of Tensors): Tensors to be stored. Returns: None Examples: .. code-block:: python import paddle from paddle.autograd import PyLayer class cus_tanh(PyLayer): @staticmethod def forward(ctx, x): # ctx is a context object that store some objects for backward. y = paddle.tanh(x) # Pass tensors to backward. ctx.save_for_backward(y) return y @staticmethod def backward(ctx, dy): # Get the tensors passed by forward. y, = ctx.saved_tensor() grad = dy * (1 - paddle.square(y)) return grad """ self.container = tensors def saved_tensor(self): """ Get the tensors stored by ``save_for_backward``. Returns: list of Tensors or None: If context contains tensors stored by `save_for_backward`, then return these tensors, otherwise return None. Examples: .. code-block:: python import paddle from paddle.autograd import PyLayer class cus_tanh(PyLayer): @staticmethod def forward(ctx, x): # ctx is a context object that store some objects for backward. y = paddle.tanh(x) # Pass tensors to backward. ctx.save_for_backward(y) return y @staticmethod def backward(ctx, dy): # Get the tensors passed by forward. y, = ctx.saved_tensor() grad = dy * (1 - paddle.square(y)) return grad """ return self.container def mark_not_inplace(self, *args): """ Marks inputs as not inplace. This should be called at most once, only from inside the `forward` method, and all arguments should be Tensor inputs. If the Tensor returned by `forward` method is the same as the Tensor input of forward, and this Tensor is marked as not_inplace, then Paddle will help the user create a new Tensor as output. Thereby preventing the auto grad information of the input Tensor from being overwritten. Examples: .. code-block:: python import paddle class Exp(paddle.autograd.PyLayer): @staticmethod def forward(ctx, x): ctx.mark_not_inplace(x) return x @staticmethod def backward(ctx, grad_output): out = grad_output.exp() return out x = paddle.randn((1, 1)) x.stop_gradient = False attn_layers = [] for idx in range(0, 2): attn_layers.append(Exp()) for step in range(0, 2): a = x for j in range(0,2): a = attn_layers[j].apply(x) a.backward() """ self.not_inplace_tensors = args def mark_non_differentiable(self, *args): """ Marks outputs as non-differentiable. This should be called at most once, only from inside the `forward` method, and all arguments should be tensor outputs. This will mark outputs as not requiring gradients, increasing the efficiency of backward computation. You still need to accept a gradient for each output in `backward`, but it's always going to be a zero tensor with the same shape as the shape of a corresponding output. Examples: .. code-block:: python import paddle from paddle.autograd import PyLayer import numpy as np class Tanh(PyLayer): @staticmethod def forward(ctx, x): a = x + x b = x + x + x ctx.mark_non_differentiable(a) return a, b @staticmethod def backward(ctx, grad_a, grad_b): assert np.equal(grad_a.numpy(), paddle.zeros([1]).numpy()) assert np.equal(grad_b.numpy(), paddle.ones([1], dtype="float64").numpy()) return grad_b x = paddle.ones([1], dtype="float64") x.stop_gradient = False a, b = Tanh.apply(x) b.sum().backward() """ self.non_differentiable = args def set_materialize_grads(self, value: bool): """ Sets whether to materialize output grad tensors. Default is True. This should be called only from inside the `forward` method. If True, undefined output grad tensors will be expanded to tensors full of zeros prior to calling the `backward` method. If False, undefined output grad tensors will be None. Examples: .. code-block:: python import paddle from paddle.autograd import PyLayer import numpy as np class Tanh(PyLayer): @staticmethod def forward(ctx, x): return x+x+x, x+x @staticmethod def backward(ctx, grad, grad2): assert np.equal(grad2.numpy(), paddle.zeros([1]).numpy()) return grad class Tanh2(PyLayer): @staticmethod def forward(ctx, x): ctx.set_materialize_grads(False) return x+x+x, x+x @staticmethod def backward(ctx, grad, grad2): assert grad2==None return grad x = paddle.ones([1], dtype="float64") x.stop_gradient = False Tanh.apply(x)[0].backward() x2 = paddle.ones([1], dtype="float64") x2.stop_gradient = False Tanh2.apply(x2)[0].backward() """ self.materialize_grads = value class PyLayerBackward(core.eager.PyLayer, PyLayerContext): def backward(self, *args): return self._forward_cls.backward(self, *args) class PyLayerMeta(type): def __init__(cls, name, bases, attrs): cls._backward_function = type( name + '_backward', (PyLayerBackward,), {"_forward_cls": cls} ) return super().__init__(name, bases, attrs) class PyLayer(with_mateclass(PyLayerMeta, core.eager.PyLayer, PyLayerContext)): """ Paddle implements Python custom operators on the PaddlePaddle framework by creating a subclass of ``PyLayer``, which must comply with the following rules: 1. The subclass must contain static ``forward`` and ``backward`` functions, with the first argument being :ref:`api_paddle_autograd_PyLayerContext`. If a returned value in ``backward`` corresponds to a ``Tensor`` that requires gradients in ``forward``, the returned value must be a ``Tensor``. 2. Except for the first argument, other arguments of ``backward`` are gradients of the output ``Tensors`` of ``forward``. Therefore, the number of input ``Tensor`` in ``backward`` must be the same as the number of output ``Tensor`` in ``forward``. If you need to use input ``Tensor`` from ``forward`` in ``backward``, you can save these ``Tensors`` by inputting them into :ref:`api_paddle_autograd_PyLayerContext`'s ``save_for_backward`` method and use them in ``backward`` later. 3. The output of ``backward`` can be ``Tensor`` or ``list/tuple(Tensor)``, which are gradients of the output ``Tensor`` of ``forward``. Therefore, the number of output ``Tensor`` in ``backward`` is the same as the number of input ``Tensor`` in ``forward``. After building the custom operator, apply it by running the ``apply`` method. """ @staticmethod def forward(ctx, *args, **kwargs): """ It is to be overloaded by subclasses. It must accept a object of :ref:`api_paddle_autograd_PyLayerContext` as the first argument, followed by any number of arguments (tensors or other types). `None` can not be included in the returned result. Args: *args(tuple): input of PyLayer. **kwargs(dict): input of PyLayer. Returns: tensors or other types : output of PyLayer. Examples: .. code-block:: python import paddle from paddle.autograd import PyLayer class cus_tanh(PyLayer): @staticmethod def forward(ctx, x): y = paddle.tanh(x) # Pass tensors to backward. ctx.save_for_backward(y) return y @staticmethod def backward(ctx, dy): # Get the tensors passed by forward. y, = ctx.saved_tensor() grad = dy * (1 - paddle.square(y)) return grad """ raise NotImplementedError( "You must implement the forward function for PyLayer." ) @staticmethod def backward(ctx, *args): """ This is a function to calculate the gradient. It is to be overloaded by subclasses. It must accept a object of :ref:`api_paddle_autograd_PyLayerContext` as the first argument, and the rest arguments are the gradient of forward's output tensors. Output tensors of backward are the gradient of forward's input tensors. Args: *args(tuple): The gradient of forward's output tensor(s). **kwargs(dict): The gradient of forward's output tensor(s). Returns: Tensor or list of Tensors: The gradient of forward's input tensor(s). Examples: .. code-block:: python import paddle from paddle.autograd import PyLayer class cus_tanh(PyLayer): @staticmethod def forward(ctx, x): y = paddle.tanh(x) # Pass tensors to backward. ctx.save_for_backward(y) return y @staticmethod def backward(ctx, dy): # Get the tensors passed by forward. y, = ctx.saved_tensor() grad = dy * (1 - paddle.square(y)) return grad """ raise NotImplementedError( "You must implement the backward function for PyLayer." ) def once_differentiable(backward): def wrapper(ctx, *args): with paddle.fluid.dygraph.no_grad(): outputs = backward(ctx, *args) return outputs return wrapper