# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import random import sys import unittest import numpy as np sys.path.append("../legacy_test") from auto_parallel_pass_test_base import AutoPallelPassTestBase import paddle from paddle.distributed import fleet class TestAMPPass(AutoPallelPassTestBase): def init(self): if paddle.is_compiled_with_cuda(): paddle.set_flags({'FLAGS_cudnn_deterministic': 1}) self.rtol = 1e-5 self.atol = 1e-8 rank = paddle.distributed.get_rank() paddle.seed(rank + 2021) random.seed(rank + 2021) np.random.seed(rank + 2021) def apply_passes(self): dist_strategy = fleet.DistributedStrategy() dist_strategy.amp = True dist_strategy.amp_configs = { "custom_white_list": [ 'softmax', 'layer_norm', 'gelu', ], "custom_black_list": ['c_softmax_with_cross_entropy'], "init_loss_scaling": 32768, "use_dynamic_loss_scaling": True, } dist_strategy.semi_auto = True fleet.init(is_collective=True, strategy=dist_strategy) def test_bs_8(self): self.check_main( gpus=[0, 1], batch_size=8, sequence_len=512, vocab_size=1000 ) def get_model(self, place, batch_size, sequence_len, vocab_size): return self.get_gpt_model( "mp", place, batch_size, sequence_len, vocab_size ) if __name__ == "__main__": unittest.main()