# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import random import sys import unittest import numpy as np from get_gpt_model import FakeDataset, generate_model import paddle from paddle.distributed.fleet import auto sys.path.append("../../python/paddle/fluid/tests/unittests") from test_sparse_addmm_op import get_cuda_version def apply_pass(use_fused_passes=False, fused_passes_list=[]): strategy = auto.Strategy() strategy.auto_mode = "semi" strategy.reinit = True fused_passes = strategy.fused_passes fused_passes.enable = use_fused_passes fused_passes.fused_passes_list = fused_passes_list return strategy def reset_prog(): paddle.fluid.framework.switch_main_program(paddle.static.Program()) paddle.fluid.framework.switch_startup_program(paddle.static.Program()) class TestFusedPassBaseList(unittest.TestCase): def setUp(self): self.rtol = 1e-5 self.atol = 1e-8 self.batch_size = 1 self.batch_num = 1 self.clip_norm = 0.2 self.dataset = FakeDataset(self.batch_size * self.batch_num) def init(self, engine): paddle.seed(2021) np.random.seed(2021) random.seed(2021) place = paddle.fluid.CUDAPlace(paddle.distributed.ParallelEnv().dev_id) engine._executor = paddle.static.Executor(place) def get_engine(self, use_fused_passes=False, fused_passes_list=[]): reset_prog() strategy = apply_pass(use_fused_passes, fused_passes_list) clip = paddle.nn.ClipGradByGlobalNorm(self.clip_norm) opt = paddle.optimizer.AdamW(learning_rate=0.00001, grad_clip=clip) model, loss = generate_model("serial") engine = auto.Engine(model, loss, opt, strategy=strategy) self.init(engine) return engine def check_results(self, ref_losses, check_losses, rtol=None, atol=None): np.testing.assert_allclose( ref_losses, check_losses, rtol=rtol or self.rtol, atol=atol or self.atol, err_msg='pass {} has wrong results!, \nu={}\nv={}\ndiff={}'.format( __class__, ref_losses, check_losses, ref_losses - check_losses ), ) def test_passes(self): losses = [] if get_cuda_version() >= 11060: for use_fused_passes in [True, False]: engine = self.get_engine( use_fused_passes, [ "fuse_bn_act", "fused_attention", "fused_feedforward", "fuse_optimizer", "fuse_gemm_epilogue", "fuse_bn_add_act", "fuse_relu_depthwise_conv", ], ) history = engine.fit( self.dataset, 3, batch_size=self.batch_size ) losses.append(np.array(history.history["loss"])) self.check_results(losses[0], losses[1]) if __name__ == "__main__": unittest.main()