# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import sys import unittest import paddle from paddle import static from paddle.distributed import fleet from paddle.distributed.auto_parallel.cluster import Cluster from paddle.distributed.auto_parallel.dist_context import ( DistributedContext, set_default_distributed_context, ) from paddle.distributed.auto_parallel.process_mesh import ProcessMesh from paddle.distributed.auto_parallel.tuner.parallel_tuner import ParallelTuner sys.path.append("../legacy_test") import auto_parallel_gpt_model as modeling from auto_parallel_gpt_model import ( GPTForPretraining, GPTModel, GPTPretrainingCriterion, ) paddle.enable_static() batch_size = 4 epoch_num = 10 hidden_size = 1024 sequence_len = 512 _g_process_mesh = [ ProcessMesh([0, 1], dim_names=["x"]), ProcessMesh([2, 3], dim_names=["x"]), ] def get_program_v3(): dist_strategy = fleet.DistributedStrategy() dist_strategy.semi_auto = True # fleet.init(is_collective=True, strategy=dist_strategy) place = paddle.set_device("gpu") gpus = [0, 1] batch_size = 8 sequence_len = 512 vocab_size = 1000 train_program = static.Program() start_program = static.Program() modeling.init_global() modeling._global_parallel_strategy = None # modeling.DPMPPP_MESH_LIST = [ # ProcessMesh([[0, 1], [2, 3]], dim_names=["x", "y"]), # ProcessMesh([[4, 5], [6, 7]], dim_names=["x", "y"]) # ] with static.program_guard(train_program, start_program): tokens = paddle.static.data( name="tokens", shape=[batch_size, sequence_len], dtype='int64' ) position_ids = paddle.static.data( name="position_ids", shape=[batch_size, sequence_len], dtype='int64' ) attention_mask = paddle.static.data( name="attention_mask", shape=[batch_size, 1, sequence_len, sequence_len], dtype='float32', ) labels = paddle.static.data( name="labels", shape=[batch_size, sequence_len], dtype='int64' ) loss_mask = paddle.static.data( name="loss_mask", shape=[batch_size, sequence_len], dtype='float32' ) data_holder = [tokens, position_ids, attention_mask, labels, loss_mask] gpt = GPTModel( vocab_size=1000, hidden_size=1024, num_hidden_layers=2, num_attention_heads=16, intermediate_size=4 * 1024, hidden_act="gelu", hidden_dropout_prob=0.0, attention_probs_dropout_prob=0.0, max_position_embeddings=1024, type_vocab_size=1, initializer_range=0.02, pad_token_id=0, eos_token_id=7, bos_token_id=0, eol_token_id=3, pp_degree=1, ) model = GPTForPretraining( gpt, vocab_size=1000, hidden_size=64, initializer_range=0.02 ) preds = model(tokens, position_ids, attention_mask) criterion = GPTPretrainingCriterion() loss = criterion(preds, labels, loss_mask) optimizer = paddle.fluid.optimizer.AdamOptimizer( learning_rate=0.00001, beta1=0.9, beta2=0.999, epsilon=1e-08, grad_clip=None, ) feed_vars = { "inputs": [tokens, position_ids, attention_mask, loss_mask], "labels": [labels], } fetch_vars = {"loss": [loss]} return ( train_program, start_program, None, loss, optimizer, feed_vars, fetch_vars, ) class TestParallelTunerTrain(unittest.TestCase): def test_tune_with_train(self): flag = False set_default_distributed_context(DistributedContext()) ( train_program, start_program, dataloader, loss, optimizer, feed_vars, fetch_vars, ) = get_program_v3() cluster = Cluster() cluster.gen_default_config_cluster(node_count=1, device_count=8) dist_context = DistributedContext( train_program, start_program, optimizer, loss, feed_vars, fetch_vars, cluster, ) dist_context.initialize() parallel_tuner = ParallelTuner(dist_context, max_trials=3, mode="train") parallel_tuner.tune() parallel_tuner._store_best_parallel_strategy() flag = True self.assertTrue(flag) if __name__ == "__main__": unittest.main()