# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import unittest import warnings import numpy as np import paddle from paddle import fluid, nn, optimizer, static from paddle.distributed.auto_parallel.auto_align_tool import AutoAlignTool from paddle.vision.datasets import MNIST warnings.filterwarnings("ignore") paddle.enable_static() paddle.set_device("gpu") startup_program = fluid.default_startup_program() main_program = fluid.default_main_program() class MnistDataset(MNIST): def __init__(self, mode, return_label=True): super().__init__(mode=mode) self.return_label = return_label def __getitem__(self, idx): img = np.reshape(self.images[idx], [1, 28, 28]) if self.return_label: return img, np.array(self.labels[idx]).astype('int64') return (img,) def __len__(self): return len(self.images) dataset = MnistDataset("train") place = paddle.CUDAPlace(0) with fluid.program_guard(main_program, startup_program): inputs = static.data(name="image", shape=[-1, 1, 28, 28], dtype="float32") labels = static.data(name="label", shape=[-1, 1], dtype="int64") z = nn.Conv2D(1, 6, 3, 1, 1).forward(inputs) z = nn.ReLU().forward(x=z) z = nn.MaxPool2D(2, 2).forward(x=z) z = nn.Conv2D(6, 16, 5, 1, 0).forward(x=z) z = nn.ReLU().forward(x=z) z = nn.MaxPool2D(2, 2).forward(x=z) z = nn.Flatten().forward(z) z = static.nn.fc(name="fc1", x=z, size=120) z = static.nn.fc(name="fc2", x=z, size=84) z = static.nn.fc(name="fc3", x=z, size=10) losses = nn.CrossEntropyLoss()(z, labels) optim = optimizer.SGD(0.001) optim.minimize(losses) class TestAlignTool(unittest.TestCase): def test_align_tool(self): executor = fluid.Executor() executor.run(startup_program) align_tool = AutoAlignTool(main_program, 1, [losses.name]) for epoch in range(5): images = np.zeros([32, 1, 28, 28], np.float32) labels = np.zeros([32, 1], np.int64) for i, data in enumerate(dataset): images[i % 32] = data[0] labels[i % 32] = data[1] if i % 31 == 0 and i > 0: fetch_list = align_tool.get_var(0, 1) fetch_list = align_tool.get_var(1, 1) fetch_list = align_tool.get_var(2, 1) fetch_list = align_tool.get_var(3, 1) fetch_list = align_tool.get_var(4, 1) fetch_list = align_tool.get_var(5, 1) vars = executor.run( main_program, feed={"image": images, "label": labels}, fetch_list=fetch_list, ) if os.path.exists("./serial") is False: os.mkdir("./serial") align_tool.save("./serial", vars, fetch_list) break AutoAlignTool.diff_informations("./serial", "./serial") AutoAlignTool.diff_informations_from_dirs( ["./serial"], ["./serial"] ) break print("test auto parallel align tool successfully!") if __name__ == "__main__": unittest.main()