# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import os from .layer_function_generator import generate_layer_fn, generate_activation_fn from .. import core from ..framework import convert_np_dtype_to_dtype_, Variable from ..data_feeder import convert_dtype, check_variable_and_dtype, check_type, check_dtype __activations_noattr__ = [ 'sigmoid', 'logsigmoid', 'exp', 'tanh', 'atan', 'tanh_shrink', 'sqrt', 'rsqrt', 'abs', 'ceil', 'floor', 'cos', 'acos', 'asin', 'sin', 'round', 'reciprocal', 'square', 'softplus', 'softsign', ] __all__ = [] for _OP in set(__all__): globals()[_OP] = generate_layer_fn(_OP) # It is a hot fix in some unittest using: # fluid.layers.scale(x=x, scale=10.0, out=out_var) # e.g.: test_program_code.py, test_dist_train.py globals()['_scale'] = generate_layer_fn('scale') globals()['_elementwise_div'] = generate_layer_fn('elementwise_div') __all__ += __activations_noattr__ for _OP in set(__activations_noattr__): globals()[_OP] = generate_activation_fn(_OP) __all__ += ['softshrink'] _softshrink_ = generate_layer_fn('softshrink') def softshrink(x, alpha=None): check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'softshrink') locals_var = locals().copy() kwargs = dict() for name, val in locals_var.items(): if val is not None: if name == 'alpha': kwargs['lambda'] = val else: kwargs[name] = val return _softshrink_(**kwargs) softshrink.__doc__ = """ :strong:`Softshrink Activation Operator` .. math:: out = \\begin{cases} x - \\alpha, \\text{if } x > \\alpha \\\\ x + \\alpha, \\text{if } x < -\\alpha \\\\ 0, \\text{otherwise} \\end{cases} Args: x: Input of Softshrink operator, an N-D Tensor, with data type float32, float64 or float16. alpha (float): non-negative offset Returns: Output of Softshrink operator with the same type of input. Examples: .. code-block:: python import paddle.fluid as fluid data = fluid.data(name="input", shape=[None, 784]) result = fluid.layers.softshrink(x=data, alpha=0.3) """ __all__ += ['hard_shrink'] _hard_shrink_ = generate_layer_fn('hard_shrink') def hard_shrink(x, threshold=None): check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'hard_shrink') locals_var = locals().copy() kwargs = dict() for name, val in locals_var.items(): if val is not None: kwargs[name] = val return _hard_shrink_(**kwargs) hard_shrink.__doc__ = _hard_shrink_.__doc__ + """ Examples: >>> import paddle.fluid as fluid >>> data = fluid.layers.data(name="input", shape=[784]) >>> result = fluid.layers.hard_shrink(x=data, threshold=0.3) """ __all__ += ['cumsum'] _cum_sum_ = generate_layer_fn('cumsum') def cumsum(x, axis=None, exclusive=None, reverse=None): check_type(x, 'x', (Variable), 'cumsum') locals_var = locals().copy() kwargs = dict() for name, val in locals_var.items(): if val is not None: kwargs[name] = val return _cum_sum_(**kwargs) cumsum.__doc__ = """ The cumulative sum of the elements along a given axis. By default, the first element of the result is the same of the first element of the input. If exlusive is true, the first element of the result is 0. Args: x (Variable): Input of cumsum operator, the Tensor/LoDTensor needed to be cumsumed. axis (int, optional): The dimension to accumulate along. -1 means the last dimension. Default is -1. exclusive (bool, optional): Whether to perform exclusive cumsum. Default is False. reverse (bool, optional): If true, the cumsum is performed in the reversed direction. Default is False. Returns: Variable(Tensor/LoDTensor): The result of cumsum operator, output of cumsum operator. Examples: .. code-block:: python import paddle.fluid as fluid data = fluid.layers.data(name="input", shape=[32, 784]) result = fluid.layers.cumsum(data, axis=0) """ __all__ += ['thresholded_relu'] _thresholded_relu_ = generate_layer_fn('thresholded_relu') def thresholded_relu(x, threshold=None): check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'thresholded_relu') locals_var = locals().copy() kwargs = dict() for name, val in locals_var.items(): if val is not None: kwargs[name] = val return _thresholded_relu_(**kwargs) thresholded_relu.__doc__ = """ :strong:`Thresholded ReLU Activation Operator` Equation: .. math:: out = \\begin{cases} x, &if x > threshold \\\\ 0, &otherwise \\end{cases} Args: x(Variable): The input of Thresholded ReLU op, Tensor or LoDTensor, dtype: float32 or float64. threshold(float, optional): The threshold value. Note that if the arg `threshold` is not set, the threshold in the equation is 1.0. Returns: Variable: The output of Thresholded ReLU op, Tensor or LoDTensor, dtype: float32 or float64, the same as the input, shape: the same as the input. Examples: .. code-block:: python # declarative mode import numpy as np from paddle import fluid x = fluid.data(name="x", shape=(-1, 3), dtype="float32") y = fluid.layers.thresholded_relu(x, threshold=0.1) place = fluid.CPUPlace() exe = fluid.Executor(place) start = fluid.default_startup_program() main = fluid.default_main_program() data = np.random.randn(2, 3).astype("float32") exe.run(start) y_np, = exe.run(main, feed={"x": data}, fetch_list=[y]) data # array([[ 0.21134382, -1.1805999 , 0.32876605], # [-1.2210793 , -0.7365624 , 1.0013918 ]], dtype=float32) y_np # array([[ 0.21134382, -0. , 0.32876605], # [-0. , -0. , 1.0013918 ]], dtype=float32) .. code-block:: python # imperative mode import numpy as np from paddle import fluid import paddle.fluid.dygraph as dg data = np.random.randn(2, 3).astype("float32") place = fluid.CPUPlace() with dg.guard(place) as g: x = dg.to_variable(data) y = fluid.layers.thresholded_relu(x, threshold=0.1) y_np = y.numpy() data # array([[ 0.21134382, -1.1805999 , 0.32876605], # [-1.2210793 , -0.7365624 , 1.0013918 ]], dtype=float32) y_np # array([[ 0.21134382, -0. , 0.32876605], # [-0. , -0. , 1.0013918 ]], dtype=float32) """ __all__ += ['gelu'] _gelu_ = generate_layer_fn('gelu') def gelu(x, approximate=False): locals_var = locals().copy() kwargs = dict() for name, val in locals_var.items(): if val is not None: kwargs[name] = val return _gelu_(**kwargs) gelu.__doc__ = """ :strong:`GeLU Activation Operator` For more details, see [Gaussian Error Linear Units](https://arxiv.org/abs/1606.08415). Equation: if approximate is True .. math:: out = 0.5 * x * (1 + tanh(\\sqrt{\\frac{2}{\\pi}} * (x + 0.044715x^{3}))) else .. math:: out = 0.5 * x * (1 + erf(\\frac{x}{\\sqrt{2}})) Args: x(Variable): The input of GeLU op, Tensor or LoDTensor, dtype: float32 or float64. Returns: Variable: The output of GeLU op, Tensor or LoDTensor, dtype: float32 or float64, the same as the input, shape: the same as the input. Examples: .. code-block:: python # declarative mode import numpy as np from paddle import fluid x = fluid.data(name="x", shape=(-1, 3), dtype="float32") y = fluid.layers.gelu(x) place = fluid.CPUPlace() exe = fluid.Executor(place) start = fluid.default_startup_program() main = fluid.default_main_program() data = np.random.randn(2, 3).astype("float32") exe.run(start) y_np, = exe.run(main, feed={"x": data}, fetch_list=[y]) data # array([[ 0.87165993, -1.0541513 , -0.37214822], # [ 0.15647964, 0.32496083, 0.33045998]], dtype=float32) y_np # array([[ 0.70456535, -0.15380788, -0.13207214], # [ 0.08796856, 0.20387867, 0.2080159 ]], dtype=float32) .. code-block:: python # imperative mode import numpy as np from paddle import fluid import paddle.fluid.dygraph as dg data = np.random.randn(2, 3).astype("float32") place = fluid.CPUPlace() with dg.guard(place) as g: x = dg.to_variable(data) y = fluid.layers.gelu(x) y_np = y.numpy() data # array([[ 0.87165993, -1.0541513 , -0.37214822], # [ 0.15647964, 0.32496083, 0.33045998]], dtype=float32) y_np # array([[ 0.70456535, -0.15380788, -0.13207214], # [ 0.08796856, 0.20387867, 0.2080159 ]], dtype=float32) """ __all__ += ['erf'] _erf_ = generate_layer_fn('erf') def erf(x): locals_var = locals().copy() kwargs = dict() for name, val in locals_var.items(): if val is not None: kwargs[name] = val return _erf_(**kwargs) erf.__doc__ = """ :strong:`Erf Operator` For more details, see [Error function](https://en.wikipedia.org/wiki/Error_function). Equation: .. math:: out = \\frac{2}{\\sqrt{\\pi}} \\int_{0}^{x}e^{- \\eta^{2}}d\\eta Args: x(Variable): The input of Erf op, Tensor or LoDTensor, dtype: float32 or float64. Returns: Variable: The output of Erf op, Tensor or LoDTensor, dtype: float32 or float64, the same as the input, shape: the same as the input. Examples: .. code-block:: python # declarative mode import numpy as np from paddle import fluid x = fluid.data(name="x", shape=(-1, 3), dtype="float32") y = fluid.layers.erf(x) place = fluid.CPUPlace() exe = fluid.Executor(place) start = fluid.default_startup_program() main = fluid.default_main_program() data = np.random.randn(2, 3).astype("float32") exe.run(start) y_np, = exe.run(main, feed={"x": data}, fetch_list=[y]) data # array([[ 0.4643714 , -1.1509596 , 1.2538221 ], # [ 0.34369683, 0.27478245, 1.1805398 ]], dtype=float32) y_np # array([[ 0.48863927, -0.8964121 , 0.9237998 ], # [ 0.37307587, 0.30242872, 0.9049887 ]], dtype=float32) .. code-block:: python # imperative mode import numpy as np from paddle import fluid import paddle.fluid.dygraph as dg data = np.random.randn(2, 3).astype("float32") place = fluid.CPUPlace() with dg.guard(place) as g: x = dg.to_variable(data) y = fluid.layers.erf(x) y_np = y.numpy() data # array([[ 0.4643714 , -1.1509596 , 1.2538221 ], # [ 0.34369683, 0.27478245, 1.1805398 ]], dtype=float32) y_np # array([[ 0.48863927, -0.8964121 , 0.9237998 ], # [ 0.37307587, 0.30242872, 0.9049887 ]], dtype=float32) """