// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #pragma once #include "paddle/phi/kernels/split_kernel.h" #include "paddle/phi/common/int_array.h" #include "paddle/phi/common/scalar.h" #include "paddle/phi/core/dense_tensor.h" #include "paddle/phi/kernels/funcs/concat_and_split_functor.h" #include "paddle/phi/kernels/funcs/strided_memcpy.h" namespace phi { template void SplitKernel(const Context& dev_ctx, const DenseTensor& x, const IntArray& sections, const Scalar& axis_scalar, std::vector outs) { std::vector shape_refer; for (size_t j = 0; j < outs.size(); ++j) { dev_ctx.template Alloc(outs[j]); shape_refer.emplace_back(outs[j]); } int axis = axis_scalar.to(); // Sometimes direct copies will be faster, this maybe need deeply analysis. if (axis == 0 && outs.size() < 10) { phi::funcs::StridedMemcpyWithAxis0(dev_ctx, x, shape_refer, &outs); } else { phi::funcs::SplitFunctor functor; functor(dev_ctx, x, shape_refer, axis, &outs); } } template void SplitWithNumKernel(const Context& dev_ctx, const DenseTensor& x, int num, const Scalar& axis_scalar, std::vector outs) { int axis_value = axis_scalar.to(); auto input_axis_dim = x.dims().at(axis_value); std::vector sections_vec; for (int i = 0; i < num; ++i) { sections_vec.push_back(input_axis_dim / num); } IntArray sections(sections_vec); SplitKernel(dev_ctx, x, sections, axis_scalar, outs); } } // namespace phi