// Copyright (c) 2021 CINN Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/cinn/runtime/cuda/cuda_util.h" #include #include #include #include #include #include #include #include #include #include #ifdef CINN_WITH_CUDNN #include #endif #include "paddle/cinn/backends/cuda_util.h" #include "paddle/cinn/backends/extern_func_jit_register.h" #include "paddle/cinn/common/target.h" #include "paddle/cinn/runtime/cuda/cublas_util.h" #include "paddle/cinn/runtime/custom_function.h" #include "paddle/cinn/runtime/flags.h" #include "paddle/cinn/utils/profiler.h" #include "paddle/cinn/utils/timer.h" namespace cinn { namespace runtime { namespace cuda { class CublasHandle { public: CublasHandle(const CublasHandle &) = delete; CublasHandle &operator=(const CublasHandle &) = delete; ~CublasHandle() { CUBLAS_CALL(cublasDestroy(cuhandle)); CUDA_CALL(cudaStreamDestroy(custream)); } static CublasHandle &GetInstance() { static CublasHandle instance; return instance; } cudaStream_t GetCuStream() { return custream; } cublasHandle_t &GetCublasHandle() { return cuhandle; } private: CublasHandle() { CUDA_CALL(cudaStreamCreate(&custream)); CUBLAS_CALL(cublasCreate(&cuhandle)); cudaMemPool_t mem_pool; CUDA_CALL(cudaDeviceGetMemPool(&mem_pool, 0)); uint64_t threshold = UINT32_MAX; CUDA_CALL(cudaMemPoolSetAttribute( mem_pool, cudaMemPoolAttrReleaseThreshold, &threshold)); int enable = 1; CUDA_CALL(cudaMemPoolSetAttribute( mem_pool, cudaMemPoolReuseFollowEventDependencies, &enable)); CUDA_CALL(cudaMemPoolSetAttribute( mem_pool, cudaMemPoolReuseAllowInternalDependencies, &enable)); } cudaStream_t custream; cublasHandle_t cuhandle; }; void cinn_call_cuda_kernel(void *kernel_fn, void *v_args, int num_args, int grid_x, int grid_y, int grid_z, int block_x, int block_y, int block_z, void *stream) { VLOG(3) << "cinn_call_cuda_kernel, grid_dim={" << grid_x << ", " << grid_y << ", " << grid_z << "}, block_dim={" << block_x << ", " << block_y << ", " << block_z << "}, num_args=" << num_args << ", stream=" << stream; std::vector kernel_args; { cinn::utils::RecordEvent record_run("prepare_args", cinn::utils::EventType::kInstruction); kernel_args.reserve(num_args); cinn_pod_value_t *args = static_cast(v_args); for (int idx = 0; idx < num_args; ++idx) { if (args[idx].type_code() == ::cinn_type_code()) { kernel_args.emplace_back( &((cinn_buffer_t *)(args[idx]))->memory); // NOLINT } else { kernel_args.emplace_back(args[idx].data_addr()); } } } { cinn::utils::RecordEvent record_run("cuLaunchKernel", cinn::utils::EventType::kInstruction); CUDA_DRIVER_CALL(cuLaunchKernel(static_cast(kernel_fn), grid_x, grid_y, grid_z, block_x, block_y, block_z, 0, // share memory static_cast(stream), kernel_args.data(), nullptr)) } } void cinn_call_cublas(void *v_args, int num_args, bool trans_a, bool trans_b, bool trans_o, float alpha, float beta, int a1, int a2, int a3, int a4, int b1, int b2, int b3, int b4, void *stream) { cinn::utils::RecordEvent record_run("cinn_call_cublas", cinn::utils::EventType::kInstruction); CHECK_EQ(num_args, 3); cublasHandle_t &cuhandle = CublasHandle::GetInstance().GetCublasHandle(); cinn_pod_value_t *args = static_cast(v_args); cudaStream_t custream = static_cast(stream); CUBLAS_CALL(cublasSetStream(cuhandle, custream)); VLOG(3) << "a1 ~ a4: " << a1 << " " << a2 << " " << a3 << " " << a4; VLOG(3) << "b1 ~ b4: " << b1 << " " << b2 << " " << b3 << " " << b4; VLOG(3) << "trans_a: " << trans_a << ", trans_b: " << trans_b << ", trans_o: " << trans_o; void *A = args[0].operator cinn_buffer_t *()->memory; void *B = args[1].operator cinn_buffer_t *()->memory; void *C = args[2].operator cinn_buffer_t *()->memory; int m = trans_o ? (trans_a ? a4 : a3) : (trans_b ? b3 : b4); int n = trans_o ? (trans_b ? b3 : b4) : (trans_a ? a4 : a3); int k = trans_a ? a3 : a4; cublasOperation_t trans_op_l = trans_o ? (trans_a ? CUBLAS_OP_N : CUBLAS_OP_T) : (trans_b ? CUBLAS_OP_T : CUBLAS_OP_N); cublasOperation_t trans_op_r = trans_o ? (trans_b ? CUBLAS_OP_N : CUBLAS_OP_T) : (trans_a ? CUBLAS_OP_T : CUBLAS_OP_N); int ldl = trans_op_l == CUBLAS_OP_N ? m : k; // trans_o ? (trans_a ? k : m) : (trans_b ? k : m); int ldr = trans_op_r == CUBLAS_OP_N ? k : n; // trans_o ? (trans_b ? n : k) : (trans_a ? n : k); int ldc = m; void *lhs = trans_o ? A : B; void *rhs = trans_o ? B : A; cudaDataType_t cuda_dtype; auto type_code = args[0].operator cinn_buffer_t *()->type.code; bool is_float = type_code == cinn_type_float; bool is_bfloat16 = type_code == cinn_type_bfloat; int bytes = args[0].operator cinn_buffer_t *()->type.bits / CHAR_BIT; if (is_float && bytes == sizeof(common::float16)) { cuda_dtype = CUDA_R_16F; } else if (is_float && bytes == sizeof(float)) { cuda_dtype = CUDA_R_32F; } else if (is_float && bytes == sizeof(double)) { cuda_dtype = CUDA_R_64F; } else if (is_bfloat16) { cuda_dtype = CUDA_R_16BF; } else { LOG(FATAL) << "unsupported cublas data type: " << static_cast(type_code) << ", bytes = " << bytes; } if (a1 * a2 * b1 * b2 == 1) { VLOG(3) << "call cublasGemm for a1 * a2 * b1 * b2 == 1"; cinn::utils::RecordEvent record_run("Call cublasGemm", cinn::utils::EventType::kInstruction); CUBLAS_CALL(cublasGemm(cuda_dtype, cuhandle, trans_op_l, trans_op_r, m, n, k, alpha, lhs, ldl, rhs, ldr, beta, C, ldc)); } else if (a1 * b1 == 1) { CHECK(a2 == b2 || a2 == 1 || b2 == 1); if (b2 == 1 && trans_op_r == CUBLAS_OP_N) { // In case of [1, bs, M, K] * [1, 1, K, N] VLOG(3) << "call cublasGemm for a1 * b1 = 1, b2 = 1, trans_op_r:" << trans_op_r; cinn::utils::RecordEvent record_run("Call cublasGemm", cinn::utils::EventType::kInstruction); CUBLAS_CALL(cublasGemm(cuda_dtype, cuhandle, trans_op_l, trans_op_r, m, a2 * n, k, alpha, lhs, ldl, A, ldr, beta, C, ldc)); } else { int stride_l = trans_o ? (a2 > 1 ? a3 * a4 : 0) : (b2 > 1 ? b3 * b4 : 0); int stride_r = trans_o ? (b2 > 1 ? b3 * b4 : 0) : (a2 > 1 ? a3 * a4 : 0); int batch = std::max(a2, b2); VLOG(3) << "call cublasGemmStridedBatched with a1*b1 = 1, stride_l = " << stride_l << ", stride_r = " << stride_r << ", batch = " << batch; cinn::utils::RecordEvent record_run("Call cublasGemmStridedBatched", cinn::utils::EventType::kInstruction); CUBLAS_CALL(cublasGemmStridedBatched(cuda_dtype, cuhandle, trans_op_l, trans_op_r, m, n, k, alpha, lhs, ldl, stride_l, rhs, ldr, stride_r, beta, C, ldc, m * n, batch)); } } else { int l1 = trans_o ? a1 : b1, l2 = trans_o ? a2 : b2, l3 = trans_o ? a3 : b3, l4 = trans_o ? a4 : b4; int r1 = trans_o ? b1 : a1, r2 = trans_o ? b2 : a2, r3 = trans_o ? b3 : a3, r4 = trans_o ? b4 : a4; if ((l1 == r1 && l2 == r2) || (l1 == 1 && l2 == 1) || (r1 == 1 && r2 == 1)) { int stride_l = (l1 == 1 && l2 == 1) ? 0 : l3 * l4; int stride_r = (r1 == 1 && r2 == 1) ? 0 : r3 * r4; // four types matmul: // (N, L) * (N, L) , (N, 1) * (N, 1) // (N, L) * (1, 1) , (1, 1) * (N, L) VLOG(3) << "call cublasGemmStridedBatched for stride_l = " << stride_l << ", stride_r = " << stride_r << ", batch = " << std::max(l1, r1) * std::max(l2, r2); cinn::utils::RecordEvent record_run("Call cublasGemmStridedBatched", cinn::utils::EventType::kInstruction); CUBLAS_CALL( cublasGemmStridedBatched(cuda_dtype, cuhandle, trans_op_l, trans_op_r, m, n, k, alpha, lhs, ldl, stride_l, rhs, ldr, stride_r, beta, C, ldc, m * n, std::max(l1, r1) * std::max(l2, r2))); } else { cinn::utils::RecordEvent record_run("Call cublasGemmBatched", cinn::utils::EventType::kInstruction); // (N, L) / (N, 1) / (1, L) int bstride_l = (l1 != 1 && l2 != 1) ? (l2 * m * k) : ((l1 != 1) ? m * k : 0); // (N, L) / (N, 1) / (1, L) int bstride_r = (r1 != 1 && r2 != 1) ? (r2 * k * n) : ((r1 != 1) ? k * n : 0); int bstride_c = std::max(l2, r2) * m * n; int stride_l = l2 == 1 ? 0 : l3 * l4; int stride_r = r2 == 1 ? 0 : r3 * r4; // six type matmul: // (N, L) * (N, 1) , (N, L) * (1, L) // (N, 1) * (N, L) , (1, L) * (N, L) // (N, 1) * (1, L) , (1, L) * (N, 1) void **ptr_arr = nullptr; cudaStream_t g_stream = CublasHandle::GetInstance().GetCuStream(); CUDA_CALL(cudaMallocAsync( &ptr_arr, sizeof(void *) * 3 * std::max(l1, r1) * std::max(l2, r2), g_stream)); std::vector ptr(3 * std::max(l1, r1) * std::max(l2, r2)); void **ptr_a = ptr.data(); void **ptr_b = ptr.data() + std::max(l1, r1) * std::max(l2, r2); void **ptr_c = ptr.data() + std::max(l1, r1) * std::max(l2, r2) * 2; for (int idx = 0, index = 0; idx < std::max(l1, r1); ++idx) { for (int idy = 0; idy < std::max(l2, r2); ++idy) { ptr_a[index] = reinterpret_cast(lhs) + (idx * bstride_l + idy * stride_l) * bytes; ptr_b[index] = reinterpret_cast(rhs) + (idx * bstride_r + idy * stride_r) * bytes; ptr_c[index] = reinterpret_cast(C) + (idx * bstride_c + idy * m * n) * bytes; ++index; } } CUDA_CALL(cudaMemcpyAsync(ptr_arr, ptr.data(), ptr.size() * sizeof(void *), cudaMemcpyHostToDevice, g_stream)); CUDA_CALL(cudaStreamSynchronize(g_stream)); CUBLAS_CALL( cublasGemmBatched(cuda_dtype, cuhandle, trans_op_l, trans_op_r, m, n, k, alpha, ptr_arr, ldl, ptr_arr + std::max(l1, r1) * std::max(l2, r2), ldr, beta, ptr_arr + std::max(l1, r1) * std::max(l2, r2) * 2, ldc, std::max(l1, r1) * std::max(l2, r2))); CUDA_CALL(cudaFreeAsync(ptr_arr, custream)); } } } void cinn_call_batched_cublas(void *v_args, int num_args, int opside, bool trans_a, bool trans_b, bool trans_o, float alpha, float beta, int a1, int a2, int a3, int a4, int b1, int b2, int b3, int b4, void *stream) { // A * [B, C, D, ...] or [B, C, D, ...] * A CHECK_EQ((num_args - 1) % 2, 0); cublasHandle_t &cuhandle = CublasHandle::GetInstance().GetCublasHandle(); cinn_pod_value_t *args = static_cast(v_args); cudaStream_t custream = static_cast(stream); CUBLAS_CALL(cublasSetStream(cuhandle, custream)); cudaDataType_t cuda_dtype; auto type_code = args[0].operator cinn_buffer_t *()->type.code; bool is_float = type_code == cinn_type_float; bool is_bfloat16 = type_code == cinn_type_bfloat; int bytes = args[0].operator cinn_buffer_t *()->type.bits / CHAR_BIT; if (is_float && bytes == sizeof(common::float16)) { cuda_dtype = CUDA_R_16F; } else if (is_float && bytes == sizeof(float)) { cuda_dtype = CUDA_R_32F; } else if (is_float && bytes == sizeof(double)) { cuda_dtype = CUDA_R_64F; } else if (is_bfloat16) { cuda_dtype = CUDA_R_16BF; } else { LOG(FATAL) << "unsupported cublas data type: " << static_cast(type_code) << ", bytes = " << bytes; } int m = trans_o ? (trans_a ? a4 : a3) : (trans_b ? b3 : b4); int n = trans_o ? (trans_b ? b3 : b4) : (trans_a ? a4 : a3); int k = trans_a ? a3 : a4; cublasOperation_t trans_op_l = trans_o ? (trans_a ? CUBLAS_OP_N : CUBLAS_OP_T) : (trans_b ? CUBLAS_OP_T : CUBLAS_OP_N); cublasOperation_t trans_op_r = trans_o ? (trans_b ? CUBLAS_OP_N : CUBLAS_OP_T) : (trans_a ? CUBLAS_OP_T : CUBLAS_OP_N); int ldl = trans_op_l == CUBLAS_OP_N ? m : k; // trans_o ? (trans_a ? k : m) : (trans_b ? k : m); int ldr = trans_op_r == CUBLAS_OP_N ? k : n; // trans_o ? (trans_b ? n : k) : (trans_a ? n : k); int ldc = m; int l1 = trans_o ? a1 : b1, l2 = trans_o ? a2 : b2, l3 = trans_o ? a3 : b3, l4 = trans_o ? a4 : b4; int r1 = trans_o ? b1 : a1, r2 = trans_o ? b2 : a2, r3 = trans_o ? b3 : a3, r4 = trans_o ? b4 : a4; // (N, L): L * M * K // (N, 1): 1 * M * K // (1, L): 0 // (1, 1): 0 int bstride_l = (l1 != 1 && l2 != 1) ? (l2 * m * k) : ((l1 != 1) ? m * k : 0); int bstride_r = (r1 != 1 && r2 != 1) ? (r2 * k * n) : ((r1 != 1) ? k * n : 0); int bstride_c = std::max(l2, r2) * m * n; // (N, L): K * N // (N, 1): 0 // (1, L): K * N // (1, 1): 0 int stride_l = l2 == 1 ? 0 : l3 * l4; int stride_r = r2 == 1 ? 0 : r3 * r4; int num_gemm = ((num_args - 1) / 2); std::vector ptr(3 * std::max(l1, r1) * std::max(l2, r2) * num_gemm); void **ptr_a = ptr.data(); void **ptr_b = ptr.data() + std::max(l1, r1) * std::max(l2, r2) * num_gemm; void **ptr_c = ptr.data() + std::max(l1, r1) * std::max(l2, r2) * num_gemm * 2; void **ptr_arr = nullptr; cudaStream_t g_stream = CublasHandle::GetInstance().GetCuStream(); CUDA_CALL(cudaMallocAsync(&ptr_arr, sizeof(void *) * ptr.size(), g_stream)); for (int g = 0, index = 0; g < num_gemm; ++g) { void *A = args[0].operator cinn_buffer_t *()->memory; void *B = args[1 + g].operator cinn_buffer_t *()->memory; void *C = args[1 + num_gemm + g].operator cinn_buffer_t *()->memory; // if opside is 1, exhange A,B. if (opside) { auto tmp = A; A = B; B = tmp; } void *lhs = trans_o ? A : B; void *rhs = trans_o ? B : A; for (int idx = 0; idx < std::max(l1, r1); ++idx) { for (int idy = 0; idy < std::max(l2, r2); ++idy) { ptr_a[index] = reinterpret_cast(lhs) + (idx * bstride_l + idy * stride_l) * bytes; ptr_b[index] = reinterpret_cast(rhs) + (idx * bstride_r + idy * stride_r) * bytes; ptr_c[index] = reinterpret_cast(C) + (idx * bstride_c + idy * m * n) * bytes; ++index; } } } CUDA_CALL(cudaMemcpyAsync(ptr_arr, ptr.data(), ptr.size() * sizeof(void *), cudaMemcpyHostToDevice, g_stream)); CUDA_CALL(cudaStreamSynchronize(g_stream)); CUBLAS_CALL(cublasGemmBatched( cuda_dtype, cuhandle, trans_op_l, trans_op_r, m, n, k, alpha, ptr_arr, ldl, ptr_arr + std::max(l1, r1) * std::max(l2, r2) * num_gemm, ldr, beta, ptr_arr + std::max(l1, r1) * std::max(l2, r2) * 2 * num_gemm, ldc, std::max(l1, r1) * std::max(l2, r2) * num_gemm)); CUDA_CALL(cudaFreeAsync(ptr_arr, custream)); } void cinn_call_cuda_memset( void *v_args, int num_args, int value, size_t count, void *stream) { CHECK_EQ(num_args, 1) << "The cinn_call_cuda_memset only accept a output"; VLOG(4) << "call cinn_call_cuda_memset with value=" << value << ", count=" << count; cinn_pod_value_t *args = static_cast(v_args); void *output = args[0].operator cinn_buffer_t *()->memory; cudaStream_t custream = static_cast(stream); CUDA_CALL(cudaMemsetAsync(output, value, count, custream)); } void cinn_call_cuda_memcpy(void *v_args, int num_args, size_t count, void *stream) { CHECK_EQ(num_args, 2) << "The cinn_call_cuda_memcpy only accept a input and a output"; VLOG(4) << "call cinn_call_cuda_memcpy with count=" << count; cinn_pod_value_t *args = static_cast(v_args); void *input = args[0].operator cinn_buffer_t *()->memory; void *output = args[1].operator cinn_buffer_t *()->memory; cudaStream_t custream = static_cast(stream); CUDA_CALL(cudaMemcpyAsync( output, input, count, cudaMemcpyDeviceToDevice, custream)); } #ifdef CINN_WITH_CUDNN class CudnnHandle { public: CudnnHandle(const CudnnHandle &) = delete; CudnnHandle &operator=(const CudnnHandle &) = delete; ~CudnnHandle() { CUDNN_CALL(cudnnDestroy(cuhandle_)); if (workspace_) { CUDA_CALL(cudaFree(workspace_)); } } static CudnnHandle &GetInstance() { static CudnnHandle instance; return instance; } cudnnHandle_t &GetCudnnHandle() { return cuhandle_; } void *GetWorkSpace(size_t size) { if (size_ >= size) { return workspace_; } else { if (workspace_) { CUDA_CALL(cudaFree(workspace_)); } size_ = size; CUDA_CALL(cudaMalloc(&workspace_, size_)); return workspace_; } } private: CudnnHandle() : workspace_(nullptr), size_(0) { CUDNN_CALL(cudnnCreate(&cuhandle_)); } cudnnHandle_t cuhandle_; void *workspace_; size_t size_; }; class ConvAlgoMap { public: ConvAlgoMap(const ConvAlgoMap &) = delete; ConvAlgoMap &operator=(const ConvAlgoMap &) = delete; static ConvAlgoMap &GetInstance() { static ConvAlgoMap instance; return instance; } void InsertAlgo(const std::string &key, const int algo) { algo_map_[key] = algo; } int GetAlgo(const std::string &key) { return algo_map_.count(key) ? algo_map_[key] : -1; } private: ConvAlgoMap() {} absl::flat_hash_map algo_map_; }; cudnnDataType_t convert_to_cudnn_dtype(void *v_args, int num_args) { CHECK_GT(num_args, 0) << "the number of arguments must larger than zero"; cinn_pod_value_t *args = static_cast(v_args); auto type_code = args[0].operator cinn_buffer_t *()->type.code; int bits = args[0].operator cinn_buffer_t *()->type.bits; for (int i = 1; i < num_args; ++i) { auto t = args[i].operator cinn_buffer_t *()->type.code; int b = args[0].operator cinn_buffer_t *()->type.bits; if (t != type_code || bits != b) { LOG(FATAL) << "The types of all arguments need to be consistent."; } } cudnnDataType_t data_type; bool is_float = type_code == cinn_type_float; bool is_bfloat16 = type_code == cinn_type_bfloat; if (is_float && bits == 16) { data_type = CUDNN_DATA_HALF; } else if (is_float && bits == 32) { data_type = CUDNN_DATA_FLOAT; } else if (is_bfloat16) { data_type = CUDNN_DATA_BFLOAT16; } else if (is_float && bits == 64) { data_type = CUDNN_DATA_DOUBLE; } else { LOG(FATAL) << "unsupported cudnn data type: " << static_cast(type_code) << ", bits = " << bits; } return data_type; } cudnnDataType_t get_cudnn_compute_dtype(cudnnDataType_t data_type) { switch (data_type) { case CUDNN_DATA_FLOAT: case CUDNN_DATA_HALF: case CUDNN_DATA_BFLOAT16: return CUDNN_DATA_FLOAT; case CUDNN_DATA_DOUBLE: return CUDNN_DATA_DOUBLE; default: LOG(FATAL) << "unsupported cudnn data type, only support " "float16/bfloat16/float32/float64 now!"; } return CUDNN_DATA_FLOAT; } std::string debug_cudnn_tensor_format(cudnnTensorFormat_t tensor_format) { switch (tensor_format) { case CUDNN_TENSOR_NCHW: return "NCHW"; case CUDNN_TENSOR_NHWC: return "NHWC"; default: LOG(FATAL) << "Only support NCHW and NHWC data layout\n"; } return ""; } std::string debug_cudnn_tensor_dtype(cudnnDataType_t tensor_dtype) { switch (tensor_dtype) { case CUDNN_DATA_FLOAT: return "float32"; case CUDNN_DATA_HALF: return "float16"; case CUDNN_DATA_BFLOAT16: return "bfloat16"; case CUDNN_DATA_DOUBLE: return "float64"; default: LOG(FATAL) << "Only support float16/bfloat16/float32/float64 now!"; } return ""; } std::string debug_cudnn_pool_mode(cudnnPoolingMode_t pool_mode) { switch (pool_mode) { case CUDNN_POOLING_MAX: return "max"; case CUDNN_POOLING_MAX_DETERMINISTIC: return "max_deterministic"; case CUDNN_POOLING_AVERAGE_COUNT_INCLUDE_PADDING: return "avg_include_padding"; case CUDNN_POOLING_AVERAGE_COUNT_EXCLUDE_PADDING: return "avg_exclulude_padding"; default: LOG(FATAL) << "Pool only support max and avg now!"; } return ""; } void cinn_call_cudnn_conv2d_forward(void *v_args, int num_args, int format, float alpha, float beta, int input_n, int input_c, int input_h, int input_w, int filter_n, int filter_c, int filter_h, int filter_w, int pad_h, int pad_w, int stride_h, int stride_w, int dilation_h, int dilation_w, int groups, int output_n, int output_c, int output_h, int output_w, void *stream) { CHECK_EQ(num_args, 3); cudnnHandle_t &handle = CudnnHandle::GetInstance().GetCudnnHandle(); CUDNN_CALL(cudnnSetStream(handle, static_cast(stream))); cinn_pod_value_t *args = static_cast(v_args); void *_x = args[0].operator cinn_buffer_t *()->memory; void *_w = args[1].operator cinn_buffer_t *()->memory; void *_y = args[2].operator cinn_buffer_t *()->memory; cudnnTensorFormat_t tensor_format = static_cast(format); cudnnDataType_t data_type = convert_to_cudnn_dtype(v_args, num_args); cudnnTensorDescriptor_t x_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&x_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( x_desc, tensor_format, data_type, input_n, input_c, input_h, input_w)); cudnnFilterDescriptor_t w_desc; CUDNN_CALL(cudnnCreateFilterDescriptor(&w_desc)); CUDNN_CALL(cudnnSetFilter4dDescriptor(w_desc, data_type, tensor_format, filter_n, filter_c, filter_h, filter_w)); cudnnConvolutionDescriptor_t conv_desc; CUDNN_CALL(cudnnCreateConvolutionDescriptor(&conv_desc)); CUDNN_CALL( cudnnSetConvolution2dDescriptor(conv_desc, pad_h, pad_w, stride_h, stride_w, dilation_h, dilation_w, CUDNN_CROSS_CORRELATION, get_cudnn_compute_dtype(data_type))); CUDNN_CALL(cudnnSetConvolutionGroupCount(conv_desc, groups)); CUDNN_CALL(cudnnSetConvolutionMathType(conv_desc, CUDNN_DEFAULT_MATH)); cudnnTensorDescriptor_t y_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&y_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor(y_desc, tensor_format, data_type, output_n, output_c, output_h, output_w)); auto &conv_algo_map = ConvAlgoMap::GetInstance(); std::string hash_key = "conv2d forward, layout=" + debug_cudnn_tensor_format(tensor_format) + ", dtype=" + debug_cudnn_tensor_dtype(data_type) + ", input_nchw={" + std::to_string(input_n) + "," + std::to_string(input_c) + "," + std::to_string(input_h) + "," + std::to_string(input_w) + "}, filter_nchw={" + std::to_string(filter_n) + "," + std::to_string(filter_c) + "," + std::to_string(filter_h) + "," + std::to_string(filter_w) + "}, output_nchw={" + std::to_string(output_n) + "," + std::to_string(output_c) + "," + std::to_string(output_h) + "," + std::to_string(output_w) + "}"; VLOG(4) << hash_key; cudnnConvolutionFwdAlgo_t algo; int algo_int = conv_algo_map.GetAlgo(hash_key); if (algo_int >= 0) { algo = cudnnConvolutionFwdAlgo_t(algo_int); } else { int count = 0; cudnnConvolutionFwdAlgoPerf_t algo_perf; CUDNN_CALL(cudnnFindConvolutionForwardAlgorithm( handle, x_desc, w_desc, conv_desc, y_desc, 1, &count, &algo_perf)); algo = algo_perf.algo; conv_algo_map.InsertAlgo(hash_key, static_cast(algo_perf.algo)); } if (GetCinnCudnnDeterministic()) { algo = static_cast(1); } size_t workspace_size = 0; CUDNN_CALL(cudnnGetConvolutionForwardWorkspaceSize( handle, x_desc, w_desc, conv_desc, y_desc, algo, &workspace_size)); void *workspace_data = CudnnHandle::GetInstance().GetWorkSpace(workspace_size); if (data_type == CUDNN_DATA_DOUBLE) { const double alpha_fp64 = static_cast(alpha); const double beta_fp64 = static_cast(beta); CUDNN_CALL(cudnnConvolutionForward(handle, &alpha_fp64, x_desc, _x, w_desc, _w, conv_desc, algo, workspace_data, workspace_size, &beta_fp64, y_desc, _y)); } else { CUDNN_CALL(cudnnConvolutionForward(handle, &alpha, x_desc, _x, w_desc, _w, conv_desc, algo, workspace_data, workspace_size, &beta, y_desc, _y)); } CUDNN_CALL(cudnnDestroyTensorDescriptor(x_desc)); CUDNN_CALL(cudnnDestroyFilterDescriptor(w_desc)); CUDNN_CALL(cudnnDestroyConvolutionDescriptor(conv_desc)); CUDNN_CALL(cudnnDestroyTensorDescriptor(y_desc)); } void cinn_call_cudnn_conv2d_backward_data(void *v_args, int num_args, int format, float alpha, float beta, int input_n, int input_c, int input_h, int input_w, int filter_n, int filter_c, int filter_h, int filter_w, int pad_h, int pad_w, int stride_h, int stride_w, int dilation_h, int dilation_w, int groups, int output_n, int output_c, int output_h, int output_w, void *stream) { CHECK_EQ(num_args, 3); cudnnHandle_t &handle = CudnnHandle::GetInstance().GetCudnnHandle(); CUDNN_CALL(cudnnSetStream(handle, static_cast(stream))); cinn_pod_value_t *args = static_cast(v_args); void *_w = args[0].operator cinn_buffer_t *()->memory; void *_dy = args[1].operator cinn_buffer_t *()->memory; void *_dx = args[2].operator cinn_buffer_t *()->memory; cudnnTensorFormat_t tensor_format = static_cast(format); cudnnDataType_t data_type = convert_to_cudnn_dtype(v_args, num_args); cudnnTensorDescriptor_t x_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&x_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( x_desc, tensor_format, data_type, input_n, input_c, input_h, input_w)); cudnnFilterDescriptor_t w_desc; CUDNN_CALL(cudnnCreateFilterDescriptor(&w_desc)); CUDNN_CALL(cudnnSetFilter4dDescriptor(w_desc, data_type, tensor_format, filter_n, filter_c, filter_h, filter_w)); cudnnConvolutionDescriptor_t conv_desc; CUDNN_CALL(cudnnCreateConvolutionDescriptor(&conv_desc)); CUDNN_CALL( cudnnSetConvolution2dDescriptor(conv_desc, pad_h, pad_w, stride_h, stride_w, dilation_h, dilation_w, CUDNN_CROSS_CORRELATION, get_cudnn_compute_dtype(data_type))); CUDNN_CALL(cudnnSetConvolutionGroupCount(conv_desc, groups)); CUDNN_CALL(cudnnSetConvolutionMathType(conv_desc, CUDNN_DEFAULT_MATH)); cudnnTensorDescriptor_t y_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&y_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor(y_desc, tensor_format, data_type, output_n, output_c, output_h, output_w)); auto &conv_algo_map = ConvAlgoMap::GetInstance(); std::string hash_key = "conv2d backward data, layout=" + debug_cudnn_tensor_format(tensor_format) + ", dtype=" + debug_cudnn_tensor_dtype(data_type) + ", input_nchw={" + std::to_string(input_n) + "," + std::to_string(input_c) + "," + std::to_string(input_h) + "," + std::to_string(input_w) + "}, filter_nchw={" + std::to_string(filter_n) + "," + std::to_string(filter_c) + "," + std::to_string(filter_h) + "," + std::to_string(filter_w) + "}, output_nchw={" + std::to_string(output_n) + "," + std::to_string(output_c) + "," + std::to_string(output_h) + "," + std::to_string(output_w) + "}"; VLOG(4) << hash_key; int algo_int = conv_algo_map.GetAlgo(hash_key); cudnnConvolutionBwdDataAlgo_t algo; if (algo_int >= 0) { algo = cudnnConvolutionBwdDataAlgo_t(algo_int); } else { int count = 0; cudnnConvolutionBwdDataAlgoPerf_t algo_perf; CUDNN_CALL(cudnnFindConvolutionBackwardDataAlgorithm( handle, w_desc, y_desc, conv_desc, x_desc, 1, &count, &algo_perf)); algo = algo_perf.algo; conv_algo_map.InsertAlgo(hash_key, static_cast(algo_perf.algo)); } if (GetCinnCudnnDeterministic()) { algo = CUDNN_CONVOLUTION_BWD_DATA_ALGO_1; } size_t workspace_size = 0; CUDNN_CALL(cudnnGetConvolutionBackwardDataWorkspaceSize( handle, w_desc, y_desc, conv_desc, x_desc, algo, &workspace_size)); void *workspace_data = CudnnHandle::GetInstance().GetWorkSpace(workspace_size); if (data_type == CUDNN_DATA_DOUBLE) { const double alpha_fp64 = static_cast(alpha); const double beta_fp64 = static_cast(beta); CUDNN_CALL(cudnnConvolutionBackwardData(handle, &alpha_fp64, w_desc, _w, y_desc, _dy, conv_desc, algo, workspace_data, workspace_size, &beta_fp64, x_desc, _dx)); } else { CUDNN_CALL(cudnnConvolutionBackwardData(handle, &alpha, w_desc, _w, y_desc, _dy, conv_desc, algo, workspace_data, workspace_size, &beta, x_desc, _dx)); } CUDNN_CALL(cudnnDestroyTensorDescriptor(x_desc)); CUDNN_CALL(cudnnDestroyFilterDescriptor(w_desc)); CUDNN_CALL(cudnnDestroyConvolutionDescriptor(conv_desc)); CUDNN_CALL(cudnnDestroyTensorDescriptor(y_desc)); } void cinn_call_cudnn_conv2d_backward_filter(void *v_args, int num_args, int format, float alpha, float beta, int input_n, int input_c, int input_h, int input_w, int filter_n, int filter_c, int filter_h, int filter_w, int pad_h, int pad_w, int stride_h, int stride_w, int dilation_h, int dilation_w, int groups, int output_n, int output_c, int output_h, int output_w, void *stream) { CHECK_EQ(num_args, 3); cudnnHandle_t &handle = CudnnHandle::GetInstance().GetCudnnHandle(); CUDNN_CALL(cudnnSetStream(handle, static_cast(stream))); cinn_pod_value_t *args = static_cast(v_args); void *_x = args[0].operator cinn_buffer_t *()->memory; void *_dy = args[1].operator cinn_buffer_t *()->memory; void *_dw = args[2].operator cinn_buffer_t *()->memory; cudnnTensorFormat_t tensor_format = static_cast(format); cudnnDataType_t data_type = convert_to_cudnn_dtype(v_args, num_args); cudnnTensorDescriptor_t x_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&x_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( x_desc, tensor_format, data_type, input_n, input_c, input_h, input_w)); cudnnFilterDescriptor_t w_desc; CUDNN_CALL(cudnnCreateFilterDescriptor(&w_desc)); CUDNN_CALL(cudnnSetFilter4dDescriptor(w_desc, data_type, tensor_format, filter_n, filter_c, filter_h, filter_w)); cudnnConvolutionDescriptor_t conv_desc; CUDNN_CALL(cudnnCreateConvolutionDescriptor(&conv_desc)); CUDNN_CALL( cudnnSetConvolution2dDescriptor(conv_desc, pad_h, pad_w, stride_h, stride_w, dilation_h, dilation_w, CUDNN_CROSS_CORRELATION, get_cudnn_compute_dtype(data_type))); CUDNN_CALL(cudnnSetConvolutionGroupCount(conv_desc, groups)); CUDNN_CALL(cudnnSetConvolutionMathType(conv_desc, CUDNN_DEFAULT_MATH)); cudnnTensorDescriptor_t y_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&y_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor(y_desc, tensor_format, data_type, output_n, output_c, output_h, output_w)); auto &algo_map = ConvAlgoMap::GetInstance(); std::string hash_key = "conv2d backward filter, layout=" + debug_cudnn_tensor_format(tensor_format) + ", dtype=" + debug_cudnn_tensor_dtype(data_type) + ", input_nchw={" + std::to_string(input_n) + "," + std::to_string(input_c) + "," + std::to_string(input_h) + "," + std::to_string(input_w) + "}, filter_nchw={" + std::to_string(filter_n) + "," + std::to_string(filter_c) + "," + std::to_string(filter_h) + "," + std::to_string(filter_w) + "}, output_nchw={" + std::to_string(output_n) + "," + std::to_string(output_c) + "," + std::to_string(output_h) + "," + std::to_string(output_w) + "}"; VLOG(4) << hash_key; int algo_int = algo_map.GetAlgo(hash_key); cudnnConvolutionBwdFilterAlgo_t algo; if (algo_int >= 0) { algo = cudnnConvolutionBwdFilterAlgo_t(algo_int); } else { int count = 0; cudnnConvolutionBwdFilterAlgoPerf_t algo_perf; CUDNN_CALL(cudnnFindConvolutionBackwardFilterAlgorithm( handle, x_desc, y_desc, conv_desc, w_desc, 1, &count, &algo_perf)); algo = algo_perf.algo; algo_map.InsertAlgo(hash_key, static_cast(algo_perf.algo)); } if (GetCinnCudnnDeterministic()) { algo = CUDNN_CONVOLUTION_BWD_FILTER_ALGO_1; } size_t workspace_size = 0; CUDNN_CALL(cudnnGetConvolutionBackwardFilterWorkspaceSize( handle, x_desc, y_desc, conv_desc, w_desc, algo, &workspace_size)); void *workspace_data = CudnnHandle::GetInstance().GetWorkSpace(workspace_size); if (data_type == CUDNN_DATA_DOUBLE) { const double alpha_fp64 = static_cast(alpha); const double beta_fp64 = static_cast(beta); CUDNN_CALL(cudnnConvolutionBackwardFilter(handle, &alpha_fp64, x_desc, _x, y_desc, _dy, conv_desc, algo, workspace_data, workspace_size, &beta_fp64, w_desc, _dw)); } else { CUDNN_CALL(cudnnConvolutionBackwardFilter(handle, &alpha, x_desc, _x, y_desc, _dy, conv_desc, algo, workspace_data, workspace_size, &beta, w_desc, _dw)); } CUDNN_CALL(cudnnDestroyTensorDescriptor(x_desc)); CUDNN_CALL(cudnnDestroyFilterDescriptor(w_desc)); CUDNN_CALL(cudnnDestroyConvolutionDescriptor(conv_desc)); CUDNN_CALL(cudnnDestroyTensorDescriptor(y_desc)); } void cinn_call_cudnn_pool2d_forward(void *v_args, int num_args, int mode, int format, float alpha, float beta, int input_n, int input_c, int input_h, int input_w, int kernel_h, int kernel_w, int pad_h, int pad_w, int stride_h, int stride_w, int output_n, int output_c, int output_h, int output_w, void *stream) { CHECK_EQ(num_args, 2); cudnnHandle_t &handle = CudnnHandle::GetInstance().GetCudnnHandle(); CUDNN_CALL(cudnnSetStream(handle, static_cast(stream))); cinn_pod_value_t *args = static_cast(v_args); void *_x = args[0].operator cinn_buffer_t *()->memory; void *_y = args[1].operator cinn_buffer_t *()->memory; cudnnPoolingMode_t pool_mode = static_cast(mode); cudnnTensorFormat_t tensor_format = static_cast(format); cudnnDataType_t data_type = convert_to_cudnn_dtype(v_args, num_args); if (GetCinnCudnnDeterministic() && pool_mode == CUDNN_POOLING_MAX) { pool_mode = CUDNN_POOLING_MAX_DETERMINISTIC; } std::string hash_key = "pool2d forward, layout=" + debug_cudnn_tensor_format(tensor_format) + ", pool_type=" + debug_cudnn_pool_mode(pool_mode) + ", dtype=" + debug_cudnn_tensor_dtype(data_type) + ", input_nchw={" + std::to_string(input_n) + "," + std::to_string(input_c) + "," + std::to_string(input_h) + "," + std::to_string(input_w) + "}, kernel_hw={" + std::to_string(kernel_h) + "," + std::to_string(kernel_w) + "}, pad_hw={" + std::to_string(pad_h) + "," + std::to_string(pad_w) + "}, stride_hw={" + std::to_string(stride_h) + "," + std::to_string(stride_w) + "}, output_nchw={" + std::to_string(output_n) + "," + std::to_string(output_c) + "," + std::to_string(output_h) + "," + std::to_string(output_w) + "}"; VLOG(4) << hash_key; cudnnPoolingDescriptor_t pool_desc; CUDNN_CALL(cudnnCreatePoolingDescriptor(&pool_desc)); CUDNN_CALL(cudnnSetPooling2dDescriptor(pool_desc, pool_mode, CUDNN_NOT_PROPAGATE_NAN, kernel_h, kernel_w, pad_h, pad_w, stride_h, stride_w)); cudnnTensorDescriptor_t x_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&x_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( x_desc, tensor_format, data_type, input_n, input_c, input_h, input_w)); cudnnTensorDescriptor_t y_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&y_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor(y_desc, tensor_format, data_type, output_n, output_c, output_h, output_w)); if (data_type == CUDNN_DATA_DOUBLE) { const double alpha_fp64 = static_cast(alpha); const double beta_fp64 = static_cast(beta); CUDNN_CALL(cudnnPoolingForward( handle, pool_desc, &alpha_fp64, x_desc, _x, &beta_fp64, y_desc, _y)); } else { CUDNN_CALL(cudnnPoolingForward( handle, pool_desc, &alpha, x_desc, _x, &beta, y_desc, _y)); } CUDNN_CALL(cudnnDestroyPoolingDescriptor(pool_desc)); CUDNN_CALL(cudnnDestroyTensorDescriptor(x_desc)); CUDNN_CALL(cudnnDestroyTensorDescriptor(y_desc)); } void cinn_call_cudnn_pool2d_backward(void *v_args, int num_args, int mode, int format, float alpha, float beta, int input_n, int input_c, int input_h, int input_w, int kernel_h, int kernel_w, int pad_h, int pad_w, int stride_h, int stride_w, int output_n, int output_c, int output_h, int output_w, void *stream) { CHECK_EQ(num_args, 4); cudnnHandle_t &handle = CudnnHandle::GetInstance().GetCudnnHandle(); CUDNN_CALL(cudnnSetStream(handle, static_cast(stream))); cinn_pod_value_t *args = static_cast(v_args); void *_x = args[0].operator cinn_buffer_t *()->memory; void *_y = args[1].operator cinn_buffer_t *()->memory; void *_dy = args[2].operator cinn_buffer_t *()->memory; void *_dx = args[3].operator cinn_buffer_t *()->memory; cudnnPoolingMode_t pool_mode = static_cast(mode); cudnnTensorFormat_t tensor_format = static_cast(format); cudnnDataType_t data_type = convert_to_cudnn_dtype(v_args, num_args); if (GetCinnCudnnDeterministic() && pool_mode == CUDNN_POOLING_MAX) { pool_mode = CUDNN_POOLING_MAX_DETERMINISTIC; } std::string hash_key = "pool2d backward, layout=" + debug_cudnn_tensor_format(tensor_format) + ", pool_type=" + debug_cudnn_pool_mode(pool_mode) + ", dtype=" + debug_cudnn_tensor_dtype(data_type) + ", input_nchw={" + std::to_string(input_n) + "," + std::to_string(input_c) + "," + std::to_string(input_h) + "," + std::to_string(input_w) + "}, kernel_hw={" + std::to_string(kernel_h) + "," + std::to_string(kernel_w) + "}, pad_hw={" + std::to_string(pad_h) + "," + std::to_string(pad_w) + "}, stride_hw={" + std::to_string(stride_h) + "," + std::to_string(stride_w) + ", output_nchw={" + std::to_string(output_n) + "," + std::to_string(output_c) + "," + std::to_string(output_h) + "," + std::to_string(output_w) + "}"; VLOG(4) << hash_key; cudnnPoolingDescriptor_t pool_desc; CUDNN_CALL(cudnnCreatePoolingDescriptor(&pool_desc)); CUDNN_CALL(cudnnSetPooling2dDescriptor(pool_desc, pool_mode, CUDNN_NOT_PROPAGATE_NAN, kernel_h, kernel_w, pad_h, pad_w, stride_h, stride_w)); cudnnTensorDescriptor_t x_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&x_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( x_desc, tensor_format, data_type, input_n, input_c, input_h, input_w)); cudnnTensorDescriptor_t y_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&y_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor(y_desc, tensor_format, data_type, output_n, output_c, output_h, output_w)); if (data_type == CUDNN_DATA_DOUBLE) { const double alpha_fp64 = static_cast(alpha); const double beta_fp64 = static_cast(beta); CUDNN_CALL(cudnnPoolingBackward(handle, pool_desc, &alpha_fp64, y_desc, _y, y_desc, _dy, x_desc, _x, &beta_fp64, x_desc, _dx)); } else { CUDNN_CALL(cudnnPoolingBackward(handle, pool_desc, &alpha, y_desc, _y, y_desc, _dy, x_desc, _x, &beta, x_desc, _dx)); } CUDNN_CALL(cudnnDestroyPoolingDescriptor(pool_desc)); CUDNN_CALL(cudnnDestroyTensorDescriptor(x_desc)); CUDNN_CALL(cudnnDestroyTensorDescriptor(y_desc)); } void cinn_call_cudnn_softmax_forward(void *v_args, int num_args, int mode, int format, float alpha, float beta, int input_n, int input_c, int input_h, int input_w, int output_n, int output_c, int output_h, int output_w, void *stream) { CHECK_EQ(num_args, 2); cudnnHandle_t &handle = CudnnHandle::GetInstance().GetCudnnHandle(); CUDNN_CALL(cudnnSetStream(handle, static_cast(stream))); cinn_pod_value_t *args = static_cast(v_args); void *_x = args[0].operator cinn_buffer_t *()->memory; void *_y = args[1].operator cinn_buffer_t *()->memory; cudnnSoftmaxMode_t softmax_mode = static_cast(mode); cudnnTensorFormat_t tensor_format = static_cast(format); cudnnDataType_t data_type = convert_to_cudnn_dtype(v_args, num_args); cudnnTensorDescriptor_t x_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&x_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( x_desc, tensor_format, data_type, input_n, input_c, input_h, input_w)); cudnnTensorDescriptor_t y_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&y_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor(y_desc, tensor_format, data_type, output_n, output_c, output_h, output_w)); if (data_type == CUDNN_DATA_DOUBLE) { const double alpha_fp64 = static_cast(alpha); const double beta_fp64 = static_cast(beta); CUDNN_CALL(cudnnSoftmaxForward(handle, CUDNN_SOFTMAX_LOG, softmax_mode, &alpha_fp64, x_desc, _x, &beta_fp64, y_desc, _y)); } else { CUDNN_CALL(cudnnSoftmaxForward(handle, CUDNN_SOFTMAX_LOG, softmax_mode, &alpha, x_desc, _x, &beta, y_desc, _y)); } CUDNN_CALL(cudnnDestroyTensorDescriptor(x_desc)); CUDNN_CALL(cudnnDestroyTensorDescriptor(y_desc)); } void cinn_call_cudnn_softmax_backward(void *v_args, int num_args, int mode, int format, float alpha, float beta, int input_n, int input_c, int input_h, int input_w, int output_n, int output_c, int output_h, int output_w, void *stream) { CHECK_EQ(num_args, 3); cudnnHandle_t &handle = CudnnHandle::GetInstance().GetCudnnHandle(); CUDNN_CALL(cudnnSetStream(handle, static_cast(stream))); cinn_pod_value_t *args = static_cast(v_args); void *_y = args[0].operator cinn_buffer_t *()->memory; void *_dy = args[1].operator cinn_buffer_t *()->memory; void *_dx = args[2].operator cinn_buffer_t *()->memory; cudnnSoftmaxMode_t softmax_mode = static_cast(mode); cudnnTensorFormat_t tensor_format = static_cast(format); cudnnDataType_t data_type = convert_to_cudnn_dtype(v_args, num_args); cudnnTensorDescriptor_t x_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&x_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor( x_desc, tensor_format, data_type, input_n, input_c, input_h, input_w)); cudnnTensorDescriptor_t y_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&y_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor(y_desc, tensor_format, data_type, output_n, output_c, output_h, output_w)); if (data_type == CUDNN_DATA_DOUBLE) { const double alpha_fp64 = static_cast(alpha); const double beta_fp64 = static_cast(beta); CUDNN_CALL(cudnnSoftmaxBackward(handle, CUDNN_SOFTMAX_LOG, softmax_mode, &alpha_fp64, y_desc, _y, y_desc, _dy, &beta_fp64, x_desc, _dx)); } else { CUDNN_CALL(cudnnSoftmaxBackward(handle, CUDNN_SOFTMAX_LOG, softmax_mode, &alpha, y_desc, _y, y_desc, _dy, &beta, x_desc, _dx)); } CUDNN_CALL(cudnnDestroyTensorDescriptor(x_desc)); CUDNN_CALL(cudnnDestroyTensorDescriptor(y_desc)); } #endif // CINN_WITH_CUDNN /********************to be removed in future***********************/ namespace details { void Gemm(const cublasHandle_t &cublas, bool lhs_trans, bool rhs_trans, const float alpha, const float *lhs_data, const std::vector &lhs_shape, const float *rhs_data, const std::vector &rhs_shape, const float *bias_data, const float beta, float *output_data, const std::vector &output_shape, cudaStream_t stream) { int lhs_row = lhs_shape[0]; int lhs_col = lhs_shape[1]; int rhs_row = rhs_shape[0]; int rhs_col = rhs_shape[1]; int output_row = output_shape[0]; int output_col = output_shape[1]; // copy values of bias_data to the output_data if (bias_data != nullptr) { cudaMemcpyAsync(output_data, bias_data, output_row * output_col * sizeof(float), cudaMemcpyDeviceToDevice, stream); } int contracting_size = lhs_trans ? lhs_row : lhs_col; CHECK_EQ(contracting_size, (rhs_trans ? rhs_col : rhs_row)) << "The contracting dimension value of lhs matrix should be equal to the " "one of rhs matrix."; auto trans_a = rhs_trans ? CUBLAS_OP_T : CUBLAS_OP_N; auto trans_b = lhs_trans ? CUBLAS_OP_T : CUBLAS_OP_N; cublasSgemm(cublas, trans_a, trans_b, output_col, output_row, contracting_size, &alpha, rhs_data, rhs_col, lhs_data, lhs_col, &beta, output_data, output_col); } void GemmStridedBatched(const cublasHandle_t &cublas, bool lhs_trans, bool rhs_trans, const float alpha, const float *lhs_data, const std::vector &lhs_shape, const float *rhs_data, const std::vector &rhs_shape, const float *bias_data, const float beta, float *output_data, const std::vector &output_shape, cudaStream_t stream) { int lhs_bs = lhs_shape[0]; int lhs_row = lhs_shape[1]; int lhs_col = lhs_shape[2]; int rhs_bs = rhs_shape[0]; int rhs_row = rhs_shape[1]; int rhs_col = rhs_shape[2]; int output_bs = output_shape[0]; int output_row = output_shape[1]; int output_col = output_shape[2]; CHECK_EQ(lhs_bs, rhs_bs); CHECK_EQ(lhs_bs, output_bs); // copy values of bias_data to the output_data if (bias_data != nullptr) { cudaMemcpyAsync(output_data, bias_data, output_bs * output_row * output_col * sizeof(float), cudaMemcpyDeviceToDevice, stream); } int contracting_size = lhs_trans ? lhs_row : lhs_col; CHECK_EQ(contracting_size, (rhs_trans ? rhs_col : rhs_row)) << "The contracting dimension value of lhs matrix should be equal to the " "one of rhs matrix."; auto trans_a = rhs_trans ? CUBLAS_OP_T : CUBLAS_OP_N; auto trans_b = lhs_trans ? CUBLAS_OP_T : CUBLAS_OP_N; int64_t lhs_stride = lhs_row * lhs_col; int64_t rhs_stride = rhs_row * rhs_col; int64_t output_stride = output_row * output_col; cublasSgemmStridedBatched(cublas, trans_a, trans_b, output_col, output_row, contracting_size, &alpha, rhs_data, rhs_col, rhs_stride, lhs_data, lhs_col, lhs_stride, &beta, output_data, output_col, output_stride, output_bs); } } // namespace details class CusolverHandle { public: CusolverHandle(const CusolverHandle &) = delete; CusolverHandle &operator=(const CusolverHandle &) = delete; ~CusolverHandle() { CUSOLVER_CALL(cusolverDnDestroy(handle_)); } static CusolverHandle &GetInstance() { static CusolverHandle instance; return instance; } cusolverDnHandle_t &GetHandle() { return handle_; } private: CusolverHandle() { CUSOLVER_CALL(cusolverDnCreate(&handle_)); } cusolverDnHandle_t handle_; }; void cinn_call_cholesky_nvgpu(void *v_args, int num_args, int batch_size, int m, bool upper, void *stream) { cinn_pod_value_t *args = static_cast(v_args); cinn_buffer_t *x = args[0].operator cinn_buffer_t *(); cinn_buffer_t *out = args[1].operator cinn_buffer_t *(); // In cuSOLVER, dense matrix stores in COL_MAJOR, thus FILL_MODE needs to be // filpped. See also: // https://docs.nvidia.com/cuda/cusolver/index.html#matrix-dense-format cublasFillMode_t uplo = upper ? CUBLAS_FILL_MODE_LOWER : CUBLAS_FILL_MODE_UPPER; size_t numel = x->num_elements(); uint8_t bits = x->type.bits; uint8_t bytes = bits / 8; CHECK_EQ(x->type.code, cinn_type_code_t::cinn_type_float); CHECK(bits == 32 || bits == 64) << "Unsupported bits = " << bits << " float data type for cholesky"; auto cuda_stream = static_cast(stream); // Copy data from x to out void *x_ptr = reinterpret_cast(x->memory); void *out_ptr = reinterpret_cast(out->memory); CUDA_CALL(cudaMemcpyAsync( out_ptr, x_ptr, numel * bytes, cudaMemcpyDeviceToDevice, cuda_stream)); // Generate pointer array thrust::host_vector host_out_ptr(batch_size, nullptr); for (int i = 0; i < batch_size; ++i) { host_out_ptr[i] = reinterpret_cast(out_ptr) + i * m * m * bytes; } thrust::device_vector dev_out_ptr(host_out_ptr.begin(), host_out_ptr.end()); // Store the return value of each matrix thrust::host_vector host_info(batch_size, 0); thrust::device_vector dev_info(host_info.begin(), host_info.end()); cusolverDnHandle_t handler = CusolverHandle::GetInstance().GetHandle(); CUSOLVER_CALL(cusolverDnSetStream(handler, cuda_stream)); if (bits == 32) { CUSOLVER_CALL(cusolverDnSpotrfBatched( handler, uplo, m, reinterpret_cast(dev_out_ptr.data().get()), m, thrust::raw_pointer_cast(dev_info.data()), batch_size)); } else if (bits == 64) { CUSOLVER_CALL(cusolverDnDpotrfBatched( handler, uplo, m, reinterpret_cast(dev_out_ptr.data().get()), m, thrust::raw_pointer_cast(dev_info.data()), batch_size)); } // Check result thrust::copy(dev_info.begin(), dev_info.end(), host_info.begin()); for (int i = 0; i < host_info.size(); i++) { CHECK_EQ(host_info[i], 0) << "Cholesky decomposition fail, please check the " << i + 1 << "th input matrix."; } } void cinn_call_triangular_solve_nvgpu(void *v_args, int num_args, int batch_size, int m, int k, bool left_side, bool upper, bool transpose_a, bool unit_diagonal, void *stream) { cublasHandle_t &handle = CublasHandle::GetInstance().GetCublasHandle(); cudaStream_t custream = static_cast(stream); CUBLAS_CALL(cublasSetStream(handle, custream)); int b_rows = left_side ? k : m; int b_cols = left_side ? m : k; int lda = m; int ldb = b_rows; cublasSideMode_t side = left_side ? CUBLAS_SIDE_RIGHT : CUBLAS_SIDE_LEFT; cublasFillMode_t uplo = upper ? CUBLAS_FILL_MODE_LOWER : CUBLAS_FILL_MODE_UPPER; cublasOperation_t transa = transpose_a ? CUBLAS_OP_T : CUBLAS_OP_N; cublasDiagType_t diag = unit_diagonal ? CUBLAS_DIAG_UNIT : CUBLAS_DIAG_NON_UNIT; cinn_pod_value_t *args = static_cast(v_args); cinn_buffer_t *input1 = args[0].operator cinn_buffer_t *(); cinn_buffer_t *input2 = args[1].operator cinn_buffer_t *(); cinn_buffer_t *output = args[2].operator cinn_buffer_t *(); CHECK_EQ(input1->type.code, cinn_type_code_t::cinn_type_float); CHECK_EQ(input2->type.code, cinn_type_code_t::cinn_type_float); CHECK_EQ(input1->type.bits, input2->type.bits); uint8_t bits = input1->type.bits; uint8_t bytes = bits / 8; CHECK(bits == 32 || bits == 64) << "unsupported bits = " << bits << " float data type for triangular solve"; std::string debug_info = "triangular solve op: left_side=" + std::to_string(left_side) + ", upper=" + std::to_string(uplo) + ", transpose_a=" + std::to_string(transa) + ", unit_diagonal=" + std::to_string(unit_diagonal) + ", batch_size=" + std::to_string(batch_size) + ", m=" + std::to_string(m) + ", k=" + std::to_string(k) + ", input1_dtype={code: " + std::to_string(input1->type.code) + ", bits: " + std::to_string(input1->type.bits) + "}" + ", input2_dtype={code: " + std::to_string(input2->type.code) + ", bits: " + std::to_string(input2->type.bits) + "}"; VLOG(4) << debug_info; void *a_ptr = reinterpret_cast(input1->memory); void *b_ptr = reinterpret_cast(input2->memory); void *x_ptr = reinterpret_cast(output->memory); // The API cublasStrsmBatched overwrites the right-hand sides, so the // right-hand sides should be copied to the output. The output can then be // used directly for the calculation. size_t numel = input2->num_elements(); CUDA_CALL(cudaMemcpyAsync( x_ptr, b_ptr, numel * bytes, cudaMemcpyDeviceToDevice, custream)); std::vector a_array(batch_size, nullptr); std::vector x_array(batch_size, nullptr); for (int i = 0; i < batch_size; ++i) { a_array[i] = reinterpret_cast(a_ptr) + i * m * m * bytes; x_array[i] = reinterpret_cast(x_ptr) + i * m * k * bytes; } thrust::device_vector dev_a_array(a_array.begin(), a_array.end()); thrust::device_vector dev_x_array(x_array.begin(), x_array.end()); if (bits == 32) { std::vector alpha(batch_size, 1.0f); CUBLAS_CALL( cublasStrsmBatched(handle, side, uplo, transa, diag, b_rows, b_cols, alpha.data(), reinterpret_cast(dev_a_array.data().get()), lda, reinterpret_cast(dev_x_array.data().get()), ldb, batch_size)); } else if (bits == 64) { std::vector alpha(batch_size, 1.0); CUBLAS_CALL(cublasDtrsmBatched( handle, side, uplo, transa, diag, b_rows, b_cols, alpha.data(), reinterpret_cast(dev_a_array.data().get()), lda, reinterpret_cast(dev_x_array.data().get()), ldb, batch_size)); } } void cinn_assert_true_nvgpu( void *v_args, int num_args, int msg, bool only_warning, void *stream) { cinn_assert_true(v_args, num_args, msg, only_warning, stream, common::DefaultNVGPUTarget()); } void cinn_gpu_cublas_mul(const std::vector &attrs, cinn_buffer_t *input1, cinn_buffer_t *input2, cinn_buffer_t *output, cudaStream_t stream) { cublasHandle_t &handle = CublasHandle::GetInstance().GetCublasHandle(); CHECK_EQ(input1->type.code, cinn_type_code_t::cinn_type_float); cudaStream_t custream = static_cast(stream); CUBLAS_CALL(cublasSetStream(handle, custream)); float *x_data = reinterpret_cast(input1->memory); float *y_data = reinterpret_cast(input2->memory); float *out_data = reinterpret_cast(output->memory); int M = 1; CHECK_GE(attrs.size(), 6); for (int i = 0; i < attrs[attrs.size() - 2]; i++) { M *= attrs[i]; } int N = attrs[attrs.size() - 3]; int K = attrs[attrs.size() - 4]; float alpha = 1.f; float beta = 0.f; // M,N * N,K cublasSgemm(handle, CUBLAS_OP_N, CUBLAS_OP_N, K, M, N, &alpha, y_data, K, x_data, N, &beta, out_data, K); } void cinn_gpu_cublas_gemm(const std::vector &attrs, cinn_buffer_t *lhs, cinn_buffer_t *rhs, cinn_buffer_t *bias, cinn_buffer_t *output, cudaStream_t stream) { cublasHandle_t &handle = CublasHandle::GetInstance().GetCublasHandle(); cudaStream_t custream = static_cast(stream); CUBLAS_CALL(cublasSetStream(handle, custream)); CHECK_EQ(lhs->type.code, cinn_type_code_t::cinn_type_float); const float *lhs_data = reinterpret_cast(lhs->memory); const float *rhs_data = reinterpret_cast(rhs->memory); const float *bias_data = bias ? reinterpret_cast(bias->memory) : nullptr; float *output_data = reinterpret_cast(output->memory); CHECK_GE(attrs.size(), 13); int lhs_dim_size = attrs[attrs.size() - 7]; int rhs_dim_size = attrs[attrs.size() - 6]; int out_dim_size = attrs[attrs.size() - 5]; bool lhs_trans = static_cast(attrs[attrs.size() - 4]); bool rhs_trans = static_cast(attrs[attrs.size() - 3]); bool out_trans = static_cast(attrs[attrs.size() - 2]); // 1)C = A^T * B --> C^T = B^T * A // 2)C = A * B^T --> C^T = B * A^T // 3)C = A^T * B^T --> C^T = B * A // 4)C = A * B --> C^T = B^T * A^T if (out_trans) { lhs_trans = static_cast(attrs[attrs.size() - 3]) ^ out_trans; rhs_trans = static_cast(attrs[attrs.size() - 4]) ^ out_trans; } const float alpha = *reinterpret_cast(&attrs[attrs.size() - 1]); const float beta = bias ? 1.f : 0.f; VLOG(4) << "The lhs_trans value used by cinn_gpu_cublas_gemm: " << lhs_trans; VLOG(4) << "The rhs_trans value used by cinn_gpu_cublas_gemm: " << rhs_trans; VLOG(4) << "The out_trans value used by cinn_gpu_cublas_gemm: " << out_trans; VLOG(4) << "The alpha value used by cinn_gpu_cublas_gemm: " << alpha; VLOG(4) << "The beta value used by cinn_gpu_cublas_gemm: " << beta; CHECK_EQ(lhs_dim_size, rhs_dim_size); CHECK_EQ(lhs_dim_size, out_dim_size); CHECK((lhs_dim_size == 2 || lhs_dim_size == 3)); if (lhs_dim_size == 2) { // [row, col] std::vector lhs_shape{attrs[0], attrs[1]}; std::vector rhs_shape{attrs[2], attrs[3]}; std::vector output_shape{attrs[4], attrs[5]}; if (out_trans) { std::swap(lhs_shape, rhs_shape); std::swap(lhs_data, rhs_data); } details::Gemm(handle, lhs_trans, rhs_trans, alpha, lhs_data, lhs_shape, rhs_data, rhs_shape, bias_data, beta, output_data, output_shape, stream); } else { // [batch, row, col] std::vector lhs_shape{attrs[0], attrs[1], attrs[2]}; std::vector rhs_shape{attrs[3], attrs[4], attrs[5]}; std::vector output_shape{attrs[6], attrs[7], attrs[8]}; if (out_trans) { std::swap(lhs_shape, rhs_shape); std::swap(lhs_data, rhs_data); } details::GemmStridedBatched(handle, lhs_trans, rhs_trans, alpha, lhs_data, lhs_shape, rhs_data, rhs_shape, bias_data, beta, output_data, output_shape, stream); } } class CurandGenerator { public: CurandGenerator() { CURAND_CALL(curandCreateGenerator(&generator_, CURAND_RNG_PSEUDO_DEFAULT)); } CurandGenerator(curandRngType rng_type) { CURAND_CALL(curandCreateGenerator(&generator_, rng_type)); } ~CurandGenerator() { CURAND_CALL(curandDestroyGenerator(generator_)); } curandGenerator_t &GetGenerator() { return generator_; } CurandGenerator &SetOffset(uint64_t offset = 0ULL) { CURAND_CALL(curandSetGeneratorOffset(generator_, offset)); VLOG(4) << "Set curand generator offset to: " << offset; return *this; } CurandGenerator &SetSeed(uint64_t seed = 0ULL) { // set global seed if seed is zero auto rand_seed = (seed == 0ULL) ? RandomSeed::GetOrSet() : seed; if (rand_seed != 0ULL && rand_seed != seed_) { CURAND_CALL(curandSetPseudoRandomGeneratorSeed(generator_, rand_seed)); VLOG(4) << "Change curand random seed from: " << seed_ << " to: " << rand_seed; seed_ = rand_seed; } return *this; } CurandGenerator &SetStream(cudaStream_t stream) { if (stream != nullptr && stream != stream_) { CURAND_CALL(curandSetStream(generator_, stream)); VLOG(4) << "Change curand generator stream from: " << stream_ << " to: " << stream; stream_ = stream; } return *this; } private: curandGenerator_t generator_; uint64_t seed_ = 0ULL; cudaStream_t stream_ = nullptr; }; class CurandGeneratorFactory { public: enum class CurandGeneratorType { GENERATOR_DEFAULT, GENERATOR_GAUSSIAN, GENERATOR_UNIFORM, GENERATOR_RANDINT, }; static CurandGenerator &Get(CurandGeneratorType type) { switch (type) { case CurandGeneratorType::GENERATOR_GAUSSIAN: static CurandGenerator gaussian_generator( CURAND_RNG_PSEUDO_PHILOX4_32_10); return gaussian_generator; case CurandGeneratorType::GENERATOR_UNIFORM: static CurandGenerator uniform_generator( CURAND_RNG_PSEUDO_PHILOX4_32_10); return uniform_generator; case CurandGeneratorType::GENERATOR_RANDINT: static CurandGenerator randint_generator(CURAND_RNG_PSEUDO_MT19937); return randint_generator; default: static CurandGenerator default_generator; return default_generator; } } }; void cinn_call_gaussian_random( void *v_args, int num_args, float mean, float std, int seed, void *stream) { cinn_pod_value_t *args = static_cast(v_args); cinn_buffer_t *output = args[0].operator cinn_buffer_t *(); cinn_type_t dtype = output->type; size_t numel = output->num_elements(); curandGenerator_t generator = CurandGeneratorFactory::Get( CurandGeneratorFactory::CurandGeneratorType::GENERATOR_GAUSSIAN) .SetStream(static_cast(stream)) .SetSeed(seed) .GetGenerator(); VLOG(4) << "cinn_call_gaussian_random: output_size=" << numel << ", mean=" << mean << ", std=" << std << ", seed=" << seed; if (dtype == cinn_float32_t()) { float *ptr = reinterpret_cast(output->memory); CURAND_CALL(curandGenerateNormal(generator, ptr, numel, mean, std)); } else if (dtype == cinn_float64_t()) { double *ptr = reinterpret_cast(output->memory); CURAND_CALL(curandGenerateNormalDouble(generator, ptr, numel, mean, std)); } else { LOG(FATAL) << "gaussian_random only support float32 and float64! Please check."; } } void cinn_call_uniform_random( void *v_args, int num_args, float min, float max, int seed, void *stream) { cinn_pod_value_t *args = static_cast(v_args); cinn_buffer_t *output = args[0].operator cinn_buffer_t *(); cinn_type_t dtype = output->type; size_t numel = output->num_elements(); curandGenerator_t generator = CurandGeneratorFactory::Get( CurandGeneratorFactory::CurandGeneratorType::GENERATOR_UNIFORM) .SetStream(static_cast(stream)) .SetSeed(seed) .GetGenerator(); VLOG(4) << "cinn_call_uniform_random: output_size=" << numel << ", min=" << min << ", max=" << max << ", seed=" << seed; if (dtype == cinn_float32_t()) { float *ptr = reinterpret_cast(output->memory); CURAND_CALL(curandGenerateUniform(generator, ptr, numel)); } else if (dtype == cinn_float64_t()) { double *ptr = reinterpret_cast(output->memory); CURAND_CALL(curandGenerateUniformDouble(generator, ptr, numel)); } else { LOG(FATAL) << "uniform_random only support float32 and float64! Please check."; } } void cinn_call_randint(void *v_args, int num_args, int seed, void *stream) { cinn_pod_value_t *args = static_cast(v_args); cinn_buffer_t *output = args[0].operator cinn_buffer_t *(); cinn_type_t dtype = output->type; size_t numel = output->num_elements(); VLOG(4) << "cinn_call_randint: output_size=" << numel << ", seed=" << seed; curandGenerator_t generator = CurandGeneratorFactory::Get( CurandGeneratorFactory::CurandGeneratorType::GENERATOR_RANDINT) .SetStream(static_cast(stream)) .SetSeed(seed) .GetGenerator(); if (dtype == cinn_int32_t()) { unsigned int *ptr = reinterpret_cast(output->memory); CURAND_CALL(curandGenerate(generator, ptr, numel)); } else { LOG(FATAL) << "randint only support int32! Please check."; } } #ifdef CINN_WITH_CUDNN namespace { cudnnDataType_t convert_to_cudnn_dtype(cinn_buffer_t *input) { CHECK(input) << "the pointer of input is null"; auto type_code = input->type.code; int bits = input->type.bits; cudnnDataType_t data_type; bool is_float = type_code == cinn_type_float; bool is_bfloat16 = type_code == cinn_type_bfloat; if (is_float && bits == 16) { data_type = CUDNN_DATA_HALF; } else if (is_float && bits == 32) { data_type = CUDNN_DATA_FLOAT; } else if (is_bfloat16) { data_type = CUDNN_DATA_BFLOAT16; } else if (is_float && bits == 64) { data_type = CUDNN_DATA_DOUBLE; } else { LOG(FATAL) << "unsupported cudnn data type: " << static_cast(type_code) << ", bits = " << bits; } return data_type; } } // namespace #define GetAttrValue(attr_map, key_name, default_value) \ int key_name = 0; \ if (attr_map.count(#key_name) != 0) { \ key_name = attr_map.find(#key_name)->second; \ } else if (default_value >= 0) { \ key_name = default_value; \ } else { \ LOG(FATAL) << #key_name << " is not exist in attr_map!"; \ } void cinn_gpu_cudnn_conv2d(const absl::flat_hash_map &attr, cinn_buffer_t *x, cinn_buffer_t *w, cinn_buffer_t *y, cudaStream_t stream, common::Layout target) { cudnnTensorFormat_t cudnn_tensor_format; if (target == common::Layout::kNCHW) { cudnn_tensor_format = CUDNN_TENSOR_NCHW; } else if (target == common::Layout::kNHWC) { cudnn_tensor_format = CUDNN_TENSOR_NHWC; } else { CINN_NOT_IMPLEMENTED } GetAttrValue(attr, input_n, -1); GetAttrValue(attr, input_c, -1); GetAttrValue(attr, input_h, -1); GetAttrValue(attr, input_w, -1); GetAttrValue(attr, weights_n, -1); GetAttrValue(attr, weights_c, -1); GetAttrValue(attr, weights_h, -1); GetAttrValue(attr, weights_w, -1); GetAttrValue(attr, pad_h, 0); GetAttrValue(attr, pad_w, 0); GetAttrValue(attr, stride_h, 1); GetAttrValue(attr, stride_w, 1); GetAttrValue(attr, dilation_h, 1); GetAttrValue(attr, dilation_w, 1); GetAttrValue(attr, groups, 1); GetAttrValue(attr, output_n, -1); GetAttrValue(attr, output_c, -1); GetAttrValue(attr, output_h, -1); GetAttrValue(attr, output_w, -1); cudnnHandle_t &handle = CudnnHandle::GetInstance().GetCudnnHandle(); CUDNN_CALL(cudnnSetStream(handle, static_cast(stream))); void *_x = x->memory; void *_w = w->memory; void *_y = y->memory; auto data_type = convert_to_cudnn_dtype(x); cudnnTensorDescriptor_t x_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&x_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor(x_desc, cudnn_tensor_format, data_type, input_n, input_c, input_h, input_w)); cudnnFilterDescriptor_t w_desc; CUDNN_CALL(cudnnCreateFilterDescriptor(&w_desc)); CUDNN_CALL(cudnnSetFilter4dDescriptor(w_desc, data_type, cudnn_tensor_format, weights_n, weights_c, weights_h, weights_w)); cudnnConvolutionDescriptor_t conv_desc; CUDNN_CALL(cudnnCreateConvolutionDescriptor(&conv_desc)); CUDNN_CALL( cudnnSetConvolution2dDescriptor(conv_desc, pad_h, pad_w, stride_h, stride_w, dilation_h, dilation_w, CUDNN_CROSS_CORRELATION, get_cudnn_compute_dtype(data_type))); CUDNN_CALL(cudnnSetConvolutionGroupCount(conv_desc, groups)); CUDNN_CALL(cudnnSetConvolutionMathType(conv_desc, CUDNN_DEFAULT_MATH)); cudnnTensorDescriptor_t y_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&y_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor(y_desc, cudnn_tensor_format, data_type, output_n, output_c, output_h, output_w)); auto &conv_algo_map = ConvAlgoMap::GetInstance(); std::string hash_key = "conv2d forward, layout=" + debug_cudnn_tensor_format(CUDNN_TENSOR_NCHW) + ", dtype=" + debug_cudnn_tensor_dtype(data_type) + ", input_nchw={" + std::to_string(input_n) + "," + std::to_string(input_c) + "," + std::to_string(input_h) + "," + std::to_string(input_w) + "}, filter_nchw={" + std::to_string(weights_n) + "," + std::to_string(weights_c) + "," + std::to_string(weights_h) + "," + std::to_string(weights_w) + "}, output_nchw={" + std::to_string(output_n) + "," + std::to_string(output_c) + "," + std::to_string(output_h) + "," + std::to_string(output_w) + "}"; cudnnConvolutionFwdAlgo_t algo; int algo_int = conv_algo_map.GetAlgo(hash_key); if (algo_int >= 0) { algo = cudnnConvolutionFwdAlgo_t(algo_int); } else { int count = 0; cudnnConvolutionFwdAlgoPerf_t algo_perf; CUDNN_CALL(cudnnFindConvolutionForwardAlgorithm( handle, x_desc, w_desc, conv_desc, y_desc, 1, &count, &algo_perf)); algo = algo_perf.algo; conv_algo_map.InsertAlgo(hash_key, static_cast(algo_perf.algo)); } if (GetCinnCudnnDeterministic()) { algo = static_cast(1); } size_t ws_size = 0; CUDNN_CALL(cudnnGetConvolutionForwardWorkspaceSize( handle, x_desc, w_desc, conv_desc, y_desc, algo, &ws_size)); void *ws_data = CudnnHandle::GetInstance().GetWorkSpace(ws_size); if (data_type == CUDNN_DATA_DOUBLE) { double alpha[] = {1.f}, beta[] = {0.f}; CUDNN_CALL(cudnnConvolutionForward(handle, alpha, x_desc, _x, w_desc, _w, conv_desc, algo, ws_data, ws_size, beta, y_desc, _y)); } else { float alpha[] = {1.f}, beta[] = {0.f}; CUDNN_CALL(cudnnConvolutionForward(handle, alpha, x_desc, _x, w_desc, _w, conv_desc, algo, ws_data, ws_size, beta, y_desc, _y)); } CUDNN_CALL(cudnnDestroyTensorDescriptor(x_desc)); CUDNN_CALL(cudnnDestroyFilterDescriptor(w_desc)); CUDNN_CALL(cudnnDestroyConvolutionDescriptor(conv_desc)); CUDNN_CALL(cudnnDestroyTensorDescriptor(y_desc)); } void cinn_gpu_cudnn_conv2d_backward_data( const absl::flat_hash_map &attr, cinn_buffer_t *w, cinn_buffer_t *dy, cinn_buffer_t *dx, cudaStream_t stream) { GetAttrValue(attr, input_n, -1); GetAttrValue(attr, input_c, -1); GetAttrValue(attr, input_h, -1); GetAttrValue(attr, input_w, -1); GetAttrValue(attr, weights_n, -1); GetAttrValue(attr, weights_c, -1); GetAttrValue(attr, weights_h, -1); GetAttrValue(attr, weights_w, -1); GetAttrValue(attr, pad_h, 0); GetAttrValue(attr, pad_w, 0); GetAttrValue(attr, stride_h, 1); GetAttrValue(attr, stride_w, 1); GetAttrValue(attr, dilation_h, 1); GetAttrValue(attr, dilation_w, 1); GetAttrValue(attr, groups, 1); GetAttrValue(attr, output_n, -1); GetAttrValue(attr, output_c, -1); GetAttrValue(attr, output_h, -1); GetAttrValue(attr, output_w, -1); cudnnHandle_t &handle = CudnnHandle::GetInstance().GetCudnnHandle(); CUDNN_CALL(cudnnSetStream(handle, static_cast(stream))); void *_w = w->memory; void *_dy = dy->memory; void *_dx = dx->memory; auto data_type = convert_to_cudnn_dtype(w); cudnnTensorDescriptor_t x_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&x_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor(x_desc, CUDNN_TENSOR_NCHW, data_type, input_n, input_c, input_h, input_w)); cudnnFilterDescriptor_t w_desc; CUDNN_CALL(cudnnCreateFilterDescriptor(&w_desc)); CUDNN_CALL(cudnnSetFilter4dDescriptor(w_desc, data_type, CUDNN_TENSOR_NCHW, weights_n, weights_c, weights_h, weights_w)); cudnnConvolutionDescriptor_t conv_desc; CUDNN_CALL(cudnnCreateConvolutionDescriptor(&conv_desc)); CUDNN_CALL( cudnnSetConvolution2dDescriptor(conv_desc, pad_h, pad_w, stride_h, stride_w, dilation_h, dilation_w, CUDNN_CROSS_CORRELATION, get_cudnn_compute_dtype(data_type))); CUDNN_CALL(cudnnSetConvolutionGroupCount(conv_desc, groups)); CUDNN_CALL(cudnnSetConvolutionMathType(conv_desc, CUDNN_DEFAULT_MATH)); cudnnTensorDescriptor_t y_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&y_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor(y_desc, CUDNN_TENSOR_NCHW, data_type, output_n, output_c, output_h, output_w)); auto &conv_algo_map = ConvAlgoMap::GetInstance(); std::string hash_key = "conv2d backward data, layout=" + debug_cudnn_tensor_format(CUDNN_TENSOR_NCHW) + ", dtype=" + debug_cudnn_tensor_dtype(data_type) + ", input_nchw={" + std::to_string(input_n) + "," + std::to_string(input_c) + "," + std::to_string(input_h) + "," + std::to_string(input_w) + "}, filter_nchw={" + std::to_string(weights_n) + "," + std::to_string(weights_c) + "," + std::to_string(weights_h) + "," + std::to_string(weights_w) + "}, output_nchw={" + std::to_string(output_n) + "," + std::to_string(output_c) + "," + std::to_string(output_h) + "," + std::to_string(output_w) + "}"; int algo_int = conv_algo_map.GetAlgo(hash_key); cudnnConvolutionBwdDataAlgo_t algo; if (algo_int >= 0) { algo = cudnnConvolutionBwdDataAlgo_t(algo_int); } else { int count = 0; cudnnConvolutionBwdDataAlgoPerf_t algo_perf; CUDNN_CALL(cudnnFindConvolutionBackwardDataAlgorithm( handle, w_desc, y_desc, conv_desc, x_desc, 1, &count, &algo_perf)); algo = algo_perf.algo; conv_algo_map.InsertAlgo(hash_key, static_cast(algo_perf.algo)); } if (GetCinnCudnnDeterministic()) { algo = CUDNN_CONVOLUTION_BWD_DATA_ALGO_1; } size_t ws_size = 0; CUDNN_CALL(cudnnGetConvolutionBackwardDataWorkspaceSize( handle, w_desc, y_desc, conv_desc, x_desc, algo, &ws_size)); void *ws_data = CudnnHandle::GetInstance().GetWorkSpace(ws_size); if (data_type == CUDNN_DATA_DOUBLE) { double alpha[] = {1.0f}, beta[] = {0.0f}; CUDNN_CALL(cudnnConvolutionBackwardData(handle, alpha, w_desc, _w, y_desc, _dy, conv_desc, algo, ws_data, ws_size, beta, x_desc, _dx)); } else { float alpha[] = {1.0f}, beta[] = {0.0f}; CUDNN_CALL(cudnnConvolutionBackwardData(handle, alpha, w_desc, _w, y_desc, _dy, conv_desc, algo, ws_data, ws_size, beta, x_desc, _dx)); } CUDNN_CALL(cudnnDestroyTensorDescriptor(x_desc)); CUDNN_CALL(cudnnDestroyFilterDescriptor(w_desc)); CUDNN_CALL(cudnnDestroyConvolutionDescriptor(conv_desc)); CUDNN_CALL(cudnnDestroyTensorDescriptor(y_desc)); } void cinn_gpu_cudnn_conv2d_backward_filter( const absl::flat_hash_map &attr, cinn_buffer_t *x, cinn_buffer_t *dy, cinn_buffer_t *dw, cudaStream_t stream) { GetAttrValue(attr, input_n, -1); GetAttrValue(attr, input_c, -1); GetAttrValue(attr, input_h, -1); GetAttrValue(attr, input_w, -1); GetAttrValue(attr, weights_n, -1); GetAttrValue(attr, weights_c, -1); GetAttrValue(attr, weights_h, -1); GetAttrValue(attr, weights_w, -1); GetAttrValue(attr, pad_h, 0); GetAttrValue(attr, pad_w, 0); GetAttrValue(attr, stride_h, 1); GetAttrValue(attr, stride_w, 1); GetAttrValue(attr, dilation_h, 1); GetAttrValue(attr, dilation_w, 1); GetAttrValue(attr, groups, 1); GetAttrValue(attr, output_n, -1); GetAttrValue(attr, output_c, -1); GetAttrValue(attr, output_h, -1); GetAttrValue(attr, output_w, -1); cudnnHandle_t &handle = CudnnHandle::GetInstance().GetCudnnHandle(); CUDNN_CALL(cudnnSetStream(handle, static_cast(stream))); void *_x = x->memory; void *_dy = dy->memory; void *_dw = dw->memory; auto data_type = convert_to_cudnn_dtype(x); cudnnTensorDescriptor_t x_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&x_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor(x_desc, CUDNN_TENSOR_NCHW, data_type, input_n, input_c, input_h, input_w)); cudnnFilterDescriptor_t w_desc; CUDNN_CALL(cudnnCreateFilterDescriptor(&w_desc)); CUDNN_CALL(cudnnSetFilter4dDescriptor(w_desc, data_type, CUDNN_TENSOR_NCHW, weights_n, weights_c, weights_h, weights_w)); cudnnConvolutionDescriptor_t conv_desc; CUDNN_CALL(cudnnCreateConvolutionDescriptor(&conv_desc)); CUDNN_CALL( cudnnSetConvolution2dDescriptor(conv_desc, pad_h, pad_w, stride_h, stride_w, dilation_h, dilation_w, CUDNN_CROSS_CORRELATION, get_cudnn_compute_dtype(data_type))); CUDNN_CALL(cudnnSetConvolutionGroupCount(conv_desc, groups)); CUDNN_CALL(cudnnSetConvolutionMathType(conv_desc, CUDNN_DEFAULT_MATH)); cudnnTensorDescriptor_t y_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&y_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor(y_desc, CUDNN_TENSOR_NCHW, data_type, output_n, output_c, output_h, output_w)); auto &algo_map = ConvAlgoMap::GetInstance(); std::string hash_key = "conv2d backward filter, layout=" + debug_cudnn_tensor_format(CUDNN_TENSOR_NCHW) + ", dtype=" + debug_cudnn_tensor_dtype(data_type) + ", input_nchw={" + std::to_string(input_n) + "," + std::to_string(input_c) + "," + std::to_string(input_h) + "," + std::to_string(input_w) + "}, filter_nchw={" + std::to_string(weights_n) + "," + std::to_string(weights_c) + "," + std::to_string(weights_h) + "," + std::to_string(weights_w) + "}, output_nchw={" + std::to_string(output_n) + "," + std::to_string(output_c) + "," + std::to_string(output_h) + "," + std::to_string(output_w) + "}"; int algo_int = algo_map.GetAlgo(hash_key); cudnnConvolutionBwdFilterAlgo_t algo; if (algo_int >= 0) { algo = cudnnConvolutionBwdFilterAlgo_t(algo_int); } else { int count = 0; cudnnConvolutionBwdFilterAlgoPerf_t algo_perf; CUDNN_CALL(cudnnFindConvolutionBackwardFilterAlgorithm( handle, x_desc, y_desc, conv_desc, w_desc, 1, &count, &algo_perf)); algo = algo_perf.algo; algo_map.InsertAlgo(hash_key, static_cast(algo_perf.algo)); } if (GetCinnCudnnDeterministic()) { algo = CUDNN_CONVOLUTION_BWD_FILTER_ALGO_1; } size_t ws_size = 0; CUDNN_CALL(cudnnGetConvolutionBackwardFilterWorkspaceSize( handle, x_desc, y_desc, conv_desc, w_desc, algo, &ws_size)); void *ws_data = CudnnHandle::GetInstance().GetWorkSpace(ws_size); if (data_type == CUDNN_DATA_DOUBLE) { double alpha[] = {1.0}, beta[] = {0.0}; CUDNN_CALL(cudnnConvolutionBackwardFilter(handle, alpha, x_desc, _x, y_desc, _dy, conv_desc, algo, ws_data, ws_size, beta, w_desc, _dw)); } else { float alpha[] = {1.0}, beta[] = {0.0}; CUDNN_CALL(cudnnConvolutionBackwardFilter(handle, alpha, x_desc, _x, y_desc, _dy, conv_desc, algo, ws_data, ws_size, beta, w_desc, _dw)); } CUDNN_CALL(cudnnDestroyTensorDescriptor(x_desc)); CUDNN_CALL(cudnnDestroyFilterDescriptor(w_desc)); CUDNN_CALL(cudnnDestroyConvolutionDescriptor(conv_desc)); CUDNN_CALL(cudnnDestroyTensorDescriptor(y_desc)); } void cinn_gpu_cudnn_pool2d(const std::vector &attrs, const std::vector &str_attrs, cinn_buffer_t *input, cinn_buffer_t *output, cudaStream_t stream) { cudnnHandle_t &handle = CudnnHandle::GetInstance().GetCudnnHandle(); CUDNN_CALL(cudnnSetStream(handle, static_cast(stream))); CHECK_EQ(attrs.size(), 17); // Here the input paddings are pad_top, pad_bottom, pad_left, pad_right. // Since pad_top==pad_bottom and pad_left==pad_rifht, we only take pad_top and // pad_left. int input_n = attrs[0]; int input_c = attrs[1]; int input_h = attrs[2]; int input_w = attrs[3]; int kernel_h = attrs[4]; int kernel_w = attrs[5]; int pad_h = attrs[6]; int pad_w = attrs[8]; int stride_h = attrs[10]; int stride_w = attrs[11]; int output_n = attrs[12]; int output_c = attrs[13]; int output_h = attrs[14]; int output_w = attrs[15]; int adaptive = attrs[16]; std::string pool_type = str_attrs[0]; cudnnPoolingDescriptor_t pooling_desc; CUDNN_CALL(cudnnCreatePoolingDescriptor(&pooling_desc)); cudnnPoolingMode_t pool_mode; if (pool_type == "max") { pool_mode = CUDNN_POOLING_MAX; } else if (pool_type == "avg") { pool_mode = CUDNN_POOLING_AVERAGE_COUNT_INCLUDE_PADDING; } else { LOG(ERROR) << "Unrecognized pool_type: " << pool_type; } if (adaptive == 1) { stride_h = input_h / output_h; stride_w = input_w / output_w; kernel_h = input_h - (output_h - 1) * stride_h; kernel_w = input_w - (output_w - 1) * stride_w; } auto data_type = convert_to_cudnn_dtype(input); CUDNN_CALL(cudnnSetPooling2dDescriptor(pooling_desc, pool_mode, CUDNN_NOT_PROPAGATE_NAN, kernel_h, kernel_w, pad_h, pad_w, stride_h, stride_w)); cudnnTensorDescriptor_t in_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&in_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor(in_desc, CUDNN_TENSOR_NCHW, data_type, input_n, input_c, input_h, input_w)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor(out_desc, CUDNN_TENSOR_NCHW, data_type, output_n, output_c, output_h, output_w)); void *in_data = input->memory; void *out_data = output->memory; if (data_type == CUDNN_DATA_DOUBLE) { double alpha = 1.0f; double beta = 0.0f; CUDNN_CALL(cudnnPoolingForward(handle, pooling_desc, &alpha, in_desc, in_data, &beta, out_desc, out_data)); } else { float alpha = 1.0f; float beta = 0.0f; CUDNN_CALL(cudnnPoolingForward(handle, pooling_desc, &alpha, in_desc, in_data, &beta, out_desc, out_data)); } cudnnDestroyTensorDescriptor(in_desc); cudnnDestroyTensorDescriptor(out_desc); cudnnDestroyPoolingDescriptor(pooling_desc); } void cinn_gpu_cudnn_softmax(const std::vector &attrs, cinn_buffer_t *input, cinn_buffer_t *output, cudaStream_t stream) { std::vector shape; int rank = attrs.size() - 1; for (int i = 0; i < rank; i++) { shape.push_back(attrs[i]); } int axis = attrs.back(); axis = axis < 0 ? rank + axis : axis; int inner_num = 1; int outer_num = 1; for (int i = 0; i < shape.size(); i++) { if (i < axis) outer_num *= shape[i]; else if (i > axis) inner_num *= shape[i]; } rank = shape.size(); auto data_type = convert_to_cudnn_dtype(input); cudnnHandle_t &handle = CudnnHandle::GetInstance().GetCudnnHandle(); CUDNN_CALL(cudnnSetStream(handle, static_cast(stream))); void *in_data = input->memory; void *out_data = output->memory; cudnnTensorDescriptor_t in_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&in_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor(in_desc, CUDNN_TENSOR_NCHW, data_type, outer_num, shape[axis], inner_num, 1)); cudnnTensorDescriptor_t out_desc; CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc)); CUDNN_CALL(cudnnSetTensor4dDescriptor(out_desc, CUDNN_TENSOR_NCHW, data_type, outer_num, shape[axis], inner_num, 1)); if (data_type == CUDNN_DATA_DOUBLE) { double alpha = 1.f; double beta = 0.f; CUDNN_CALL(cudnnSoftmaxForward(handle, CUDNN_SOFTMAX_ACCURATE, CUDNN_SOFTMAX_MODE_CHANNEL, &alpha, in_desc, in_data, &beta, out_desc, out_data)); } else { float alpha = 1.f; float beta = 0.f; CUDNN_CALL(cudnnSoftmaxForward(handle, CUDNN_SOFTMAX_ACCURATE, CUDNN_SOFTMAX_MODE_CHANNEL, &alpha, in_desc, in_data, &beta, out_desc, out_data)); } cudnnDestroyTensorDescriptor(in_desc); cudnnDestroyTensorDescriptor(out_desc); } #endif // CINN_WITH_CUDNN } // namespace cuda } // namespace runtime } // namespace cinn