# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import paddle import paddle.fluid as fluid import numpy as np import unittest class TestFunctionalL1Loss(unittest.TestCase): def setUp(self): self.input_np = np.random.random(size=(10, 10, 5)).astype(np.float32) self.label_np = np.random.random(size=(10, 10, 5)).astype(np.float32) def run_imperative(self): input = paddle.to_tensor(self.input_np) label = paddle.to_tensor(self.label_np) dy_result = paddle.nn.functional.l1_loss(input, label) expected = np.mean(np.abs(self.input_np - self.label_np)) self.assertTrue(np.allclose(dy_result.numpy(), expected)) self.assertTrue(dy_result.shape, [1]) dy_result = paddle.nn.functional.l1_loss(input, label, reduction='sum') expected = np.sum(np.abs(self.input_np - self.label_np)) self.assertTrue(np.allclose(dy_result.numpy(), expected)) self.assertTrue(dy_result.shape, [1]) dy_result = paddle.nn.functional.l1_loss(input, label, reduction='none') expected = np.abs(self.input_np - self.label_np) self.assertTrue(np.allclose(dy_result.numpy(), expected)) self.assertTrue(dy_result.shape, [10, 10, 5]) def run_static(self, use_gpu=False): input = paddle.data(name='input', shape=[10, 10, 5], dtype='float32') label = paddle.data(name='label', shape=[10, 10, 5], dtype='float32') result0 = paddle.nn.functional.l1_loss(input, label) result1 = paddle.nn.functional.l1_loss(input, label, reduction='sum') result2 = paddle.nn.functional.l1_loss(input, label, reduction='none') y = paddle.nn.functional.l1_loss(input, label, name='aaa') place = fluid.CUDAPlace(0) if use_gpu else fluid.CPUPlace() exe = fluid.Executor(place) exe.run(fluid.default_startup_program()) static_result = exe.run( feed={"input": self.input_np, "label": self.label_np}, fetch_list=[result0, result1, result2]) expected = np.mean(np.abs(self.input_np - self.label_np)) self.assertTrue(np.allclose(static_result[0], expected)) expected = np.sum(np.abs(self.input_np - self.label_np)) self.assertTrue(np.allclose(static_result[1], expected)) expected = np.abs(self.input_np - self.label_np) self.assertTrue(np.allclose(static_result[2], expected)) self.assertTrue('aaa' in y.name) def test_cpu(self): paddle.disable_static(place=paddle.fluid.CPUPlace()) self.run_imperative() paddle.enable_static() with fluid.program_guard(fluid.Program()): self.run_static() def test_gpu(self): if not fluid.core.is_compiled_with_cuda(): return paddle.disable_static(place=paddle.fluid.CUDAPlace(0)) self.run_imperative() paddle.enable_static() with fluid.program_guard(fluid.Program()): self.run_static(use_gpu=True) # test case the raise message def test_errors(self): def test_value_error(): input = paddle.data( name='input', shape=[10, 10, 5], dtype='float32') label = paddle.data( name='label', shape=[10, 10, 5], dtype='float32') loss = paddle.nn.functional.l1_loss( input, label, reduction='reduce_mean') self.assertRaises(ValueError, test_value_error) class TestClassL1Loss(unittest.TestCase): def setUp(self): self.input_np = np.random.random(size=(10, 10, 5)).astype(np.float32) self.label_np = np.random.random(size=(10, 10, 5)).astype(np.float32) def run_imperative(self): input = paddle.to_tensor(self.input_np) label = paddle.to_tensor(self.label_np) l1_loss = paddle.nn.loss.L1Loss() dy_result = l1_loss(input, label) expected = np.mean(np.abs(self.input_np - self.label_np)) self.assertTrue(np.allclose(dy_result.numpy(), expected)) self.assertTrue(dy_result.shape, [1]) l1_loss = paddle.nn.loss.L1Loss(reduction='sum') dy_result = l1_loss(input, label) expected = np.sum(np.abs(self.input_np - self.label_np)) self.assertTrue(np.allclose(dy_result.numpy(), expected)) self.assertTrue(dy_result.shape, [1]) l1_loss = paddle.nn.loss.L1Loss(reduction='none') dy_result = l1_loss(input, label) expected = np.abs(self.input_np - self.label_np) self.assertTrue(np.allclose(dy_result.numpy(), expected)) self.assertTrue(dy_result.shape, [10, 10, 5]) def run_static(self, use_gpu=False): input = paddle.data(name='input', shape=[10, 10, 5], dtype='float32') label = paddle.data(name='label', shape=[10, 10, 5], dtype='float32') l1_loss = paddle.nn.loss.L1Loss() result0 = l1_loss(input, label) l1_loss = paddle.nn.loss.L1Loss(reduction='sum') result1 = l1_loss(input, label) l1_loss = paddle.nn.loss.L1Loss(reduction='none') result2 = l1_loss(input, label) l1_loss = paddle.nn.loss.L1Loss(name='aaa') result3 = l1_loss(input, label) place = fluid.CUDAPlace(0) if use_gpu else fluid.CPUPlace() exe = fluid.Executor(place) exe.run(fluid.default_startup_program()) static_result = exe.run( feed={"input": self.input_np, "label": self.label_np}, fetch_list=[result0, result1, result2]) expected = np.mean(np.abs(self.input_np - self.label_np)) self.assertTrue(np.allclose(static_result[0], expected)) expected = np.sum(np.abs(self.input_np - self.label_np)) self.assertTrue(np.allclose(static_result[1], expected)) expected = np.abs(self.input_np - self.label_np) self.assertTrue(np.allclose(static_result[2], expected)) self.assertTrue('aaa' in result3.name) def test_cpu(self): paddle.disable_static(place=paddle.fluid.CPUPlace()) self.run_imperative() paddle.enable_static() with fluid.program_guard(fluid.Program()): self.run_static() def test_gpu(self): if not fluid.core.is_compiled_with_cuda(): return paddle.disable_static(place=paddle.fluid.CUDAPlace(0)) self.run_imperative() paddle.enable_static() with fluid.program_guard(fluid.Program()): self.run_static(use_gpu=True) # test case the raise message def test_errors(self): def test_value_error(): loss = paddle.nn.loss.L1Loss(reduction="reduce_mean") self.assertRaises(ValueError, test_value_error) if __name__ == "__main__": unittest.main()