# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import paddle import paddle.fluid as fluid import unittest import numpy as np def run_static(x_np, dtype, op_str, use_gpu=False): paddle.enable_static() startup_program = fluid.Program() main_program = fluid.Program() place = paddle.CPUPlace() if use_gpu and fluid.core.is_compiled_with_cuda(): place = paddle.CUDAPlace(0) exe = fluid.Executor(place) with fluid.program_guard(main_program, startup_program): x = paddle.data(name='x', shape=x_np.shape, dtype=dtype) res = getattr(paddle.tensor, op_str)(x) exe.run(startup_program) static_result = exe.run(main_program, feed={'x': x_np}, fetch_list=[res]) return static_result def run_dygraph(x_np, op_str, use_gpu=True): place = paddle.CPUPlace() if use_gpu and fluid.core.is_compiled_with_cuda(): place = paddle.CUDAPlace(0) paddle.disable_static(place) x = paddle.to_tensor(x_np) dygraph_result = getattr(paddle.tensor, op_str)(x) return dygraph_result def np_data_generator(low, high, np_shape, type, sv_list, op_str, *args, **kwargs): x_np = np.random.uniform(low, high, np_shape).astype(getattr(np, type)) # x_np.shape[0] >= len(sv_list) if type in ['float16', 'float32', 'float64']: for i, v in enumerate(sv_list): x_np[i] = v ori_shape = x_np.shape x_np = x_np.reshape((np.product(ori_shape), )) np.random.shuffle(x_np) x_np = x_np.reshape(ori_shape) result_np = getattr(np, op_str)(x_np) return x_np, result_np TEST_META_DATA = [ { 'low': 0.1, 'high': 1, 'np_shape': [8, 17, 5, 6, 7], 'type': 'float16', 'sv_list': [np.inf, np.nan] }, { 'low': 0.1, 'high': 1, 'np_shape': [11, 17], 'type': 'float32', 'sv_list': [np.inf, np.nan] }, { 'low': 0.1, 'high': 1, 'np_shape': [2, 3, 4, 5], 'type': 'float64', 'sv_list': [np.inf, np.nan] }, { 'low': 0, 'high': 100, 'np_shape': [11, 17, 10], 'type': 'int32', 'sv_list': [np.inf, np.nan] }, { 'low': 0, 'high': 999, 'np_shape': [132], 'type': 'int64', 'sv_list': [np.inf, np.nan] }, ] def test(test_case, op_str, use_gpu=False): for meta_data in TEST_META_DATA: meta_data = dict(meta_data) meta_data['op_str'] = op_str x_np, result_np = np_data_generator(**meta_data) static_result = run_static(x_np, meta_data['type'], op_str, use_gpu) dygraph_result = run_dygraph(x_np, op_str, use_gpu) test_case.assertTrue((static_result == result_np).all()) test_case.assertTrue((dygraph_result.numpy() == result_np).all()) class TestCPUNormal(unittest.TestCase): def test_inf(self): test(self, 'isinf') def test_nan(self): test(self, 'isnan') def test_finite(self): test(self, 'isfinite') class TestCUDANormal(unittest.TestCase): def test_inf(self): test(self, 'isinf', True) def test_nan(self): test(self, 'isnan', True) def test_finite(self): test(self, 'isfinite', True) class TestError(unittest.TestCase): def test_bad_input(self): paddle.enable_static() with fluid.program_guard(fluid.Program()): def test_isinf_bad_x(): x = [1, 2, 3] result = paddle.tensor.isinf(x) self.assertRaises(TypeError, test_isinf_bad_x) def test_isnan_bad_x(): x = [1, 2, 3] result = paddle.tensor.isnan(x) self.assertRaises(TypeError, test_isnan_bad_x) def test_isfinite_bad_x(): x = [1, 2, 3] result = paddle.tensor.isfinite(x) self.assertRaises(TypeError, test_isfinite_bad_x) if __name__ == '__main__': unittest.main()