# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import unittest import numpy as np from op_test import OpTest, skip_check_grad_ci import paddle.fluid as fluid from paddle.fluid import compiler, Program, program_guard, core import paddle class TestConcatOp(OpTest): def setUp(self): self.op_type = "concat" self.dtype = self.get_dtype() self.init_test_data() self.inputs = {'X': [('x0', self.x0), ('x1', self.x1), ('x2', self.x2)]} self.attrs = {'axis': self.axis} if self.axis < 0: self.actual_axis = self.axis + len(self.x0.shape) self.actual_axis = self.actual_axis if self.actual_axis > 0 else 0 else: self.actual_axis = self.axis self.outputs = { 'Out': np.concatenate( (self.x0, self.x1, self.x2), axis=self.actual_axis) } def get_dtype(self): return "float64" def test_check_output(self): self.check_output() def test_check_grad(self): self.check_grad(['x0'], 'Out') self.check_grad(['x1'], 'Out') self.check_grad(['x2'], 'Out') def init_test_data(self): self.x0 = np.random.random((5, 1, 4, 5)).astype(self.dtype) self.x1 = np.random.random((5, 2, 4, 5)).astype(self.dtype) self.x2 = np.random.random((5, 3, 4, 5)).astype(self.dtype) self.axis = 1 class TestConcatOp2(TestConcatOp): def init_test_data(self): self.x0 = np.random.random((2, 3, 4, 5)).astype(self.dtype) self.x1 = np.random.random((2, 3, 4, 5)).astype(self.dtype) self.x2 = np.random.random((2, 3, 4, 5)).astype(self.dtype) self.axis = 1 @skip_check_grad_ci( reason="The function 'check_grad' for large inputs is too slow.") class TestConcatOp3(TestConcatOp): def init_test_data(self): self.x0 = np.random.random((1, 256, 170, 256)).astype(self.dtype) self.x1 = np.random.random((1, 128, 170, 256)).astype(self.dtype) self.x2 = np.random.random((1, 128, 170, 256)).astype(self.dtype) self.axis = 1 def test_check_grad(self): pass @skip_check_grad_ci( reason="This test will meet fetch error when there is a null grad. The detailed information is in PR#17015." ) class TestConcatOp4(TestConcatOp): def init_test_data(self): self.x0 = np.random.random((2, 3, 4, 5)).astype(self.dtype) self.x1 = np.random.random((2, 3, 4, 5)).astype(self.dtype) self.x2 = np.random.random((0, 3, 4, 5)).astype(self.dtype) self.axis = 0 def test_check_grad(self): pass class TestConcatOp5(TestConcatOp): def init_test_data(self): self.x0 = np.random.random((5, 1, 4, 5)).astype(self.dtype) self.x1 = np.random.random((5, 2, 4, 5)).astype(self.dtype) self.x2 = np.random.random((5, 3, 4, 5)).astype(self.dtype) self.axis = -3 class TestConcatOp6(TestConcatOp): def setUp(self): self.op_type = "concat" self.dtype = self.get_dtype() self.init_test_data() self.lod = [[20, 80]] self.out_lod = [[20, 80, 20, 80, 20, 80]] self.inputs = { 'X': [('x0', (self.x0, self.lod)), ('x1', (self.x1, self.lod)), ('x2', (self.x2, self.lod))] } self.attrs = {'axis': self.axis} if self.axis < 0: self.actual_axis = self.axis + len(self.x0.shape) self.actual_axis = self.actual_axis if self.actual_axis > 0 else 0 else: self.actual_axis = self.axis out = np.concatenate((self.x0, self.x1, self.x2), axis=self.actual_axis) self.outputs = {'Out': (out, self.out_lod)} def test_check_output(self): self.check_output(check_dygraph=False) def test_check_grad(self): self.check_grad(['x0'], 'Out', check_dygraph=False) self.check_grad(['x1'], 'Out', check_dygraph=False) self.check_grad(['x2'], 'Out', check_dygraph=False) def init_test_data(self): self.x0 = np.random.random([100]).astype(self.dtype) self.x1 = np.random.random([100]).astype(self.dtype) self.x2 = np.random.random([100]).astype(self.dtype) self.axis = 0 def create_test_AxisTensor(parent): class TestConcatAxisTensor(parent): def setUp(self): self.op_type = "concat" self.dtype = self.get_dtype() self.init_test_data() self.inputs = { 'X': [('x0', self.x0), ('x1', self.x1), ('x2', self.x2)], 'AxisTensor': np.array([self.axis]).astype("int32") } self.attrs = {} if self.axis < 0: self.actual_axis = self.axis + len(self.x0.shape) self.actual_axis = self.actual_axis if self.actual_axis > 0 else 0 else: self.actual_axis = self.axis self.outputs = { 'Out': np.concatenate( (self.x0, self.x1, self.x2), axis=self.actual_axis) } cls_name = "{0}_{1}".format(parent.__name__, "AxisTensor") TestConcatAxisTensor.__name__ = cls_name globals()[cls_name] = TestConcatAxisTensor create_test_AxisTensor(TestConcatOp) create_test_AxisTensor(TestConcatOp2) create_test_AxisTensor(TestConcatOp3) create_test_AxisTensor(TestConcatOp4) create_test_AxisTensor(TestConcatOp5) create_test_AxisTensor(TestConcatOp6) #----------------Concat Fp16---------------- def create_test_fp16(parent): class TestConcatFp16(parent): def get_dtype(self): return np.float16 cls_name = "{0}_{1}".format(parent.__name__, "Fp16") TestConcatFp16.__name__ = cls_name globals()[cls_name] = TestConcatFp16 create_test_fp16(TestConcatOp) create_test_fp16(TestConcatOp2) create_test_fp16(TestConcatOp3) create_test_fp16(TestConcatOp4) create_test_fp16(TestConcatOp5) create_test_fp16(TestConcatOp6) class TestConcatOpError(unittest.TestCase): def test_errors(self): with program_guard(Program(), Program()): # The input type of concat_op should be list. x1 = fluid.layers.data(shape=[4], dtype='int32', name='x1') fluid.layers.concat(x1) # The item in input must be Variable. x2 = fluid.create_lod_tensor( np.array([[-1]]), [[1]], fluid.CPUPlace()) x3 = fluid.create_lod_tensor( np.array([[-1]]), [[1]], fluid.CPUPlace()) self.assertRaises(TypeError, fluid.layers.concat, [x2]) # The input dtype of concat_op must be float16, float32, float64, int32, int64. x4 = fluid.layers.data(shape=[4], dtype='uint8', name='x4') x5 = fluid.layers.data(shape=[4], dtype='uint8', name='x5') self.assertRaises(TypeError, fluid.layers.concat, [x4, x5]) x6 = fluid.layers.data(shape=[4], dtype='float16', name='x6') x7 = fluid.layers.data(shape=[4], dtype='float16', name='x7') x8 = fluid.layers.data(shape=[4], dtype='float32', name='x8') fluid.layers.concat([x6, x7]) # The type of axis in concat_op should be int or Variable. def test_axis_type(): fluid.layers.concat([x6, x7], 3.2) self.assertRaises(TypeError, test_axis_type) def test_input_same_dtype(): fluid.layers.concat([x7, x8]) self.assertRaises(TypeError, test_input_same_dtype) class TestConcatAPI(unittest.TestCase): def test_fluid_api(self): x_1 = fluid.data(shape=[None, 1, 4, 5], dtype='int32', name='x_1') fluid.layers.concat([x_1, x_1], 0) input_2 = np.random.random([2, 1, 4, 5]).astype("int32") input_3 = np.random.random([2, 2, 4, 5]).astype("int32") x_2 = fluid.data(shape=[2, 1, 4, 5], dtype='int32', name='x_2') x_3 = fluid.data(shape=[2, 2, 4, 5], dtype='int32', name='x_3') positive_1_int32 = fluid.layers.fill_constant([1], "int32", 1) positive_1_int64 = fluid.layers.fill_constant([1], "int64", 1) out_1 = fluid.layers.concat(input=[x_2, x_3], axis=1) out_2 = fluid.layers.concat(input=[x_2, x_3], axis=positive_1_int32) out_3 = fluid.layers.concat(input=[x_2, x_3], axis=positive_1_int64) exe = fluid.Executor(place=fluid.CPUPlace()) [res_1, res_2, res_3] = exe.run( fluid.default_main_program(), feed={"x_1": input_2, "x_2": input_2, "x_3": input_3}, fetch_list=[out_1, out_2, out_3]) assert np.array_equal(res_1, np.concatenate((input_2, input_3), axis=1)) assert np.array_equal(res_2, np.concatenate((input_2, input_3), axis=1)) assert np.array_equal(res_3, np.concatenate((input_2, input_3), axis=1)) def test_api(self): x_1 = paddle.data(shape=[None, 1, 4, 5], dtype='int32', name='x_1') paddle.concat([x_1, x_1], 0) input_2 = np.random.random([2, 1, 4, 5]).astype("int32") input_3 = np.random.random([2, 2, 4, 5]).astype("int32") x_2 = fluid.data(shape=[2, 1, 4, 5], dtype='int32', name='x_2') x_3 = fluid.data(shape=[2, 2, 4, 5], dtype='int32', name='x_3') positive_1_int32 = paddle.fill_constant([1], "int32", 1) positive_1_int64 = paddle.fill_constant([1], "int64", 1) negative_int64 = paddle.fill_constant([1], "int64", -3) out_1 = paddle.concat(x=[x_2, x_3], axis=1) out_2 = paddle.concat(x=[x_2, x_3], axis=positive_1_int32) out_3 = paddle.concat(x=[x_2, x_3], axis=positive_1_int64) out_4 = paddle.concat(x=[x_2, x_3], axis=negative_int64) exe = paddle.static.Executor(place=paddle.CPUPlace()) [res_1, res_2, res_3, res_4] = exe.run( paddle.static.default_main_program(), feed={"x_1": input_2, "x_2": input_2, "x_3": input_3}, fetch_list=[out_1, out_2, out_3, out_4]) assert np.array_equal(res_1, np.concatenate((input_2, input_3), axis=1)) assert np.array_equal(res_2, np.concatenate((input_2, input_3), axis=1)) assert np.array_equal(res_3, np.concatenate((input_2, input_3), axis=1)) assert np.array_equal(res_4, np.concatenate((input_2, input_3), axis=1)) def test_imperative(self): in1 = np.array([[1, 2, 3], [4, 5, 6]]) in2 = np.array([[11, 12, 13], [14, 15, 16]]) in3 = np.array([[21, 22], [23, 24]]) paddle.disable_static() x1 = paddle.to_tensor(in1) x2 = paddle.to_tensor(in2) x3 = paddle.to_tensor(in3) out1 = fluid.layers.concat(input=[x1, x2, x3], axis=-1) out2 = paddle.concat(x=[x1, x2], axis=0) np_out1 = np.concatenate([in1, in2, in3], axis=-1) np_out2 = np.concatenate([in1, in2], axis=0) paddle.enable_static() self.assertEqual((out1.numpy() == np_out1).all(), True) self.assertEqual((out2.numpy() == np_out2).all(), True) def test_errors(self): with program_guard(Program(), Program()): # The item in input must be Variable. x2 = fluid.create_lod_tensor( np.array([[-1]]), [[1]], fluid.CPUPlace()) x3 = fluid.create_lod_tensor( np.array([[-1]]), [[1]], fluid.CPUPlace()) self.assertRaises(TypeError, paddle.concat, [x2]) # The input dtype of concat_op must be float16, float32, float64, int32, int64. x4 = paddle.data(shape=[4], dtype='uint8', name='x4') x5 = paddle.data(shape=[4], dtype='uint8', name='x5') self.assertRaises(TypeError, fluid.layers.concat, [x4, x5]) # The type of axis in concat_op should be int or Variable. x6 = fluid.layers.data(shape=[4], dtype='float16', name='x6') x7 = fluid.layers.data(shape=[4], dtype='float16', name='x7') x8 = fluid.layers.data(shape=[4], dtype='float32', name='x8') def test_axis_type(): paddle.concat([x6, x7], 3.2) self.assertRaises(TypeError, test_axis_type) def test_input_same_dtype(): paddle.concat([x7, x8]) self.assertRaises(TypeError, test_input_same_dtype) class TestConcatAPIWithLoDTensorArray(unittest.TestCase): """ Test concat api when the input(x) is a LoDTensorArray. """ def setUp(self): self.axis = 1 self.iter_num = 3 self.input_shape = [2, 3] self.x = np.random.random(self.input_shape).astype("float32") self.place = fluid.CUDAPlace(0) \ if fluid.is_compiled_with_cuda() else fluid.CPUPlace() self.set_program() def set_program(self): self.program = fluid.Program() with fluid.program_guard(self.program): input = fluid.layers.assign(self.x) tensor_array = fluid.layers.create_array(dtype='float32') zero = fluid.layers.fill_constant(shape=[1], value=0, dtype="int64") for i in range(self.iter_num): fluid.layers.array_write(input, zero + i, tensor_array) self.out_var = fluid.layers.concat(tensor_array, axis=self.axis) def test_case(self): self.assertTrue(self.out_var.shape[self.axis] == -1) exe = fluid.Executor(self.place) res = exe.run(self.program, fetch_list=self.out_var) self.assertTrue( np.array_equal( res[0], np.concatenate( [self.x] * self.iter_num, axis=self.axis))) if __name__ == '__main__': unittest.main()