/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include "paddle/fluid/framework/eigen.h" #include "paddle/fluid/framework/op_registry.h" #include "paddle/fluid/memory/memory.h" #include "paddle/fluid/operators/conv_cudnn_helper.h" #include "paddle/fluid/operators/conv_cudnn_op_cache.h" #include "paddle/fluid/operators/conv_op.h" #include "paddle/fluid/platform/assert.h" #include "paddle/fluid/platform/cudnn_helper.h" #include "paddle/fluid/platform/cudnn_workspace_helper.h" #include "paddle/fluid/platform/float16.h" #include "paddle/fluid/platform/profiler.h" DEFINE_bool(cudnn_deterministic, false, "Whether allow using an autotuning algorithm for convolution " "operator. The autotuning algorithm may be non-deterministic. If " "true, the algorithm is deterministic."); DEFINE_uint64(conv_workspace_size_limit, paddle::platform::kDefaultConvWorkspaceSizeLimitMB, "cuDNN convolution workspace limit in MB unit."); DEFINE_bool(cudnn_exhaustive_search, false, "Whether enable exhaustive search for cuDNN convolution or " "not, default is False."); namespace paddle { namespace operators { using Tensor = framework::Tensor; using ScopedTensorDescriptor = platform::ScopedTensorDescriptor; using ScopedFilterDescriptor = platform::ScopedFilterDescriptor; using ScopedConvolutionDescriptor = platform::ScopedConvolutionDescriptor; using DataLayout = platform::DataLayout; template using ScalingParamType = typename platform::CudnnDataType::ScalingParamType; using framework::AlgorithmsCache; static inline void GetNCDHW(const framework::DDim& dims, const DataLayout& layout, int* N, int* C, int* D, int* H, int* W) { *N = dims[0]; *C = layout == DataLayout::kNCHW ? dims[1] : dims[dims.size() - 1]; int i = layout == DataLayout::kNCHW ? 0 : 1; if (dims.size() == 5) { *D = dims[2 - i]; *H = dims[3 - i]; *W = dims[4 - i]; } else { *D = 1; *H = dims[2 - i]; *W = dims[3 - i]; } } template class CUDNNConvOpKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { auto& dev_ctx = ctx.template device_context(); PADDLE_ENFORCE(platform::is_gpu_place(ctx.GetPlace()), "It must use CUDAPlace."); auto* input = ctx.Input("Input"); auto* filter = ctx.Input("Filter"); auto* output = ctx.Output("Output"); std::vector strides = ctx.Attr>("strides"); std::vector paddings = ctx.Attr>("paddings"); std::vector dilations = ctx.Attr>("dilations"); int groups = ctx.Attr("groups"); int64_t user_workspace_size = static_cast(ctx.Attr("workspace_size_MB")); bool exhaustive_search = FLAGS_cudnn_exhaustive_search || ctx.Attr("exhaustive_search"); const T* input_data = input->data(); const T* filter_data = filter->data(); T* output_data = output->mutable_data(ctx.GetPlace()); // ------------------- cudnn descriptors --------------------- ScopedTensorDescriptor input_desc; ScopedTensorDescriptor output_desc; ScopedFilterDescriptor filter_desc; ScopedConvolutionDescriptor conv_desc; DataLayout layout = DataLayout::kNCHW; if (input->dims().size() == 5) { layout = DataLayout::kNCDHW; } cudnnConvolutionDescriptor_t cudnn_conv_desc = conv_desc.descriptor(paddings, strides, dilations); #if CUDNN_VERSION_MIN(7, 0, 1) // cudnn 7 can support groups, no need to do it manually // FIXME(typhoonzero): find a better way to disable groups // rather than setting it to 1. CUDNN_ENFORCE(platform::dynload::cudnnSetConvolutionGroupCount( cudnn_conv_desc, groups)); groups = 1; #endif cudnnTensorDescriptor_t cudnn_input_desc = input_desc.descriptor( layout, framework::vectorize2int(input->dims()), groups); cudnnTensorDescriptor_t cudnn_output_desc = output_desc.descriptor( layout, framework::vectorize2int(output->dims()), groups); cudnnFilterDescriptor_t cudnn_filter_desc = filter_desc.descriptor( layout, framework::vectorize2int(filter->dims()), groups); int i_n, i_c, i_d, i_h, i_w; GetNCDHW(input->dims(), DataLayout::kNCHW, &i_n, &i_c, &i_d, &i_h, &i_w); int o_n, o_c, o_d, o_h, o_w; GetNCDHW(output->dims(), DataLayout::kNCHW, &o_n, &o_c, &o_d, &o_h, &o_w); int group_offset_in = i_c / groups * i_h * i_w * i_d; int group_offset_out = o_c / groups * o_h * o_w * o_d; int group_offset_filter = filter->numel() / groups; // ------------------- cudnn conv workspace --------------------- size_t workspace_size_in_bytes; // final workspace to allocate. size_t workspace_size_limit = 0; if (FLAGS_conv_workspace_size_limit > 0 || user_workspace_size > 0) { int64_t max_user_size = std::min(static_cast(FLAGS_conv_workspace_size_limit), user_workspace_size); workspace_size_limit = max_user_size * 1024 * 1024; } // ------------------- cudnn conv algorithm --------------------- cudnnConvolutionFwdAlgo_t algo{}; bool half_float = false; #if CUDA_VERSION >= 9000 && CUDNN_VERSION_MIN(7, 0, 1) // Tensor core is supported since the volta GPU and // is only enabled when input and filter data are float16 if (dev_ctx.GetComputeCapability() >= 70 && std::type_index(typeid(T)) == std::type_index(typeid(platform::float16))) { CUDNN_ENFORCE(platform::dynload::cudnnSetConvolutionMathType( cudnn_conv_desc, CUDNN_TENSOR_OP_MATH)); // Currently tensor core is only enabled using this algo algo = CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_PRECOMP_GEMM; half_float = true; VLOG(5) << "use cudnn_tensor_op_math"; } else { CUDNN_ENFORCE(platform::dynload::cudnnSetConvolutionMathType( cudnn_conv_desc, CUDNN_DEFAULT_MATH)); VLOG(5) << "NOT use cudnn_tensor_op_math"; } #endif auto handle = dev_ctx.cudnn_handle(); auto workspace_handle = dev_ctx.cudnn_workspace_handle(); auto x_dims = framework::vectorize(input->dims()); auto f_dims = framework::vectorize(filter->dims()); // TODO(dangqingqing) simplify the following code by SearchAlgorithm in // conv_cudnn_helper.h bool has_got_workspace_size = false; if ((!exhaustive_search) && (!half_float)) { #if CUDNN_VERSION >= 7001 using perf_t = cudnnConvolutionFwdAlgoPerf_t; int perf_count; int best_algo_idx = 0; std::unique_ptr perf_results(new perf_t[kNUM_CUDNN_FWD_ALGS]); CUDNN_ENFORCE(platform::dynload::cudnnGetConvolutionForwardAlgorithm_v7( handle, cudnn_input_desc, cudnn_filter_desc, cudnn_conv_desc, cudnn_output_desc, kNUM_CUDNN_FWD_ALGS, &perf_count, perf_results.get())); algo = (perf_results.get())[best_algo_idx].algo; // get workspace size able to allocate CUDNN_ENFORCE(platform::dynload::cudnnGetConvolutionForwardWorkspaceSize( handle, cudnn_input_desc, cudnn_filter_desc, cudnn_conv_desc, cudnn_output_desc, algo, &workspace_size_in_bytes)); // NOTE(zjl): cudnnGetConvolutionForwardAlgorithm_v7 cannot limit // workspace size. If the workspace size found by v7 exceeds the limit, // we should fallback to non-v7 method to find another algorithm. if (workspace_size_in_bytes > workspace_size_limit) { VLOG(1) << "Fallback to non-v7 method to find conv algorithm becasue " "the workspace size request(" << workspace_size_in_bytes << ") exceeds the limit(" << workspace_size_limit << ")"; #endif CUDNN_ENFORCE(platform::dynload::cudnnGetConvolutionForwardAlgorithm( handle, cudnn_input_desc, cudnn_filter_desc, cudnn_conv_desc, cudnn_output_desc, CUDNN_CONVOLUTION_FWD_SPECIFY_WORKSPACE_LIMIT, workspace_size_limit, &algo)); #if CUDNN_VERSION >= 7001 } else { has_got_workspace_size = true; } #endif VLOG(3) << "cuDNN forward algo " << algo; } else if (exhaustive_search && (!half_float)) { AlgorithmsCache& algo_cache = ctx.GetKernelConfig>(0); algo = algo_cache.GetAlgorithm( x_dims, f_dims, strides, paddings, dilations, 0, [&]() { int returned_algo_count; std::array fwd_perf_stat; auto cudnn_find_func = [&](void* cudnn_workspace) { CUDNN_ENFORCE( platform::dynload::cudnnFindConvolutionForwardAlgorithmEx( handle, cudnn_input_desc, input_data, cudnn_filter_desc, filter_data, cudnn_conv_desc, cudnn_output_desc, output_data, kNUM_CUDNN_FWD_ALGS, &returned_algo_count, fwd_perf_stat.data(), cudnn_workspace, workspace_size_limit)); }; workspace_handle.RunFuncSync(cudnn_find_func, workspace_size_limit); VLOG(3) << "Perf result: (algo: stat, time, memory)"; for (int i = 0; i < returned_algo_count; ++i) { const auto& stat = fwd_perf_stat[i]; VLOG(3) << stat.algo << ": " << stat.status << " " << stat.time << " " << stat.memory; } return fwd_perf_stat[0].algo; }); VLOG(3) << "choose algo " << algo; } else { PADDLE_ENFORCE(half_float, "cuDNN exhaustive search doesn't support half float."); } if (!has_got_workspace_size) { // get workspace size able to allocate CUDNN_ENFORCE(platform::dynload::cudnnGetConvolutionForwardWorkspaceSize( handle, cudnn_input_desc, cudnn_filter_desc, cudnn_conv_desc, cudnn_output_desc, algo, &workspace_size_in_bytes)); } // It is possible for float16 on Volta GPU to allocate more memory than // the limit because the algo is overrided to use tensor core. PADDLE_ENFORCE_LE(workspace_size_in_bytes, workspace_size_limit, "workspace_size to be allocated exceeds the limit"); // Allocate on GPU memory Tensor cudnn_workspace = ctx.AllocateTmpTensor( framework::make_ddim( {static_cast(workspace_size_in_bytes)}), dev_ctx); void* cudnn_workspace_ptr = static_cast(cudnn_workspace.data()); VLOG(2) << "Cudnn workspace size fwd: " << static_cast(workspace_size_in_bytes) / (1 << 20) << " MB"; // ------------------- cudnn conv forward --------------------- ScalingParamType alpha = 1.0f, beta = 0.0f; for (int i = 0; i < groups; i++) { CUDNN_ENFORCE(platform::dynload::cudnnConvolutionForward( handle, &alpha, cudnn_input_desc, input_data + i * group_offset_in, cudnn_filter_desc, filter_data + i * group_offset_filter, cudnn_conv_desc, algo, cudnn_workspace_ptr, workspace_size_in_bytes, &beta, cudnn_output_desc, output_data + i * group_offset_out)); } } }; template class CUDNNConvGradOpKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { auto& dev_ctx = ctx.template device_context(); PADDLE_ENFORCE(platform::is_gpu_place(ctx.GetPlace()), "It must use CUDAPlace."); auto input = ctx.Input("Input"); auto filter = ctx.Input("Filter"); auto output_grad = ctx.Input(framework::GradVarName("Output")); auto input_grad = ctx.Output(framework::GradVarName("Input")); auto filter_grad = ctx.Output(framework::GradVarName("Filter")); const T* input_data = input->data(); const T* output_grad_data = output_grad->data(); const T* filter_data = filter->data(); std::vector strides = ctx.Attr>("strides"); std::vector paddings = ctx.Attr>("paddings"); std::vector dilations = ctx.Attr>("dilations"); int groups = ctx.Attr("groups"); int64_t user_workspace_size = static_cast(ctx.Attr("workspace_size_MB")); bool exhaustive_search = FLAGS_cudnn_exhaustive_search || ctx.Attr("exhaustive_search"); if (exhaustive_search && FLAGS_cudnn_deterministic) { PADDLE_THROW( "Can't set exhaustive_search True and " "FLAGS_cudnn_deterministic True at same time."); } // ------------------- cudnn descriptors --------------------- ScopedTensorDescriptor input_desc; ScopedTensorDescriptor output_grad_desc; ScopedFilterDescriptor filter_desc; ScopedFilterDescriptor filter_grad_desc; ScopedConvolutionDescriptor conv_desc; DataLayout layout = DataLayout::kNCHW; if (input->dims().size() == 5) { layout = DataLayout::kNCDHW; } cudnnConvolutionDescriptor_t cudnn_conv_desc = conv_desc.descriptor(paddings, strides, dilations); #if CUDNN_VERSION_MIN(7, 0, 1) // cudnn 7 can support groups, no need to do it manually // FIXME(typhoonzero): find a better way to disable groups // rather than setting it to 1. CUDNN_ENFORCE(platform::dynload::cudnnSetConvolutionGroupCount( cudnn_conv_desc, groups)); groups = 1; #endif cudnnTensorDescriptor_t cudnn_input_desc = input_desc.descriptor( layout, framework::vectorize2int(input->dims()), groups); cudnnTensorDescriptor_t cudnn_output_grad_desc = output_grad_desc.descriptor( layout, framework::vectorize2int(output_grad->dims()), groups); cudnnFilterDescriptor_t cudnn_filter_desc = filter_desc.descriptor( layout, framework::vectorize2int(filter->dims()), groups); #if CUDA_VERSION >= 9000 && CUDNN_VERSION_MIN(7, 0, 1) // Enable Tensor Core for cudnn backward if (dev_ctx.GetComputeCapability() >= 70 && std::type_index(typeid(T)) == std::type_index(typeid(platform::float16))) { CUDNN_ENFORCE(platform::dynload::cudnnSetConvolutionMathType( cudnn_conv_desc, CUDNN_TENSOR_OP_MATH)); VLOG(5) << "use cudnn_tensor_op_math for backward"; } else { CUDNN_ENFORCE(platform::dynload::cudnnSetConvolutionMathType( cudnn_conv_desc, CUDNN_DEFAULT_MATH)); VLOG(5) << "NOT use cudnn_tensor_op_math for backward"; } #endif int i_n, i_c, i_d, i_h, i_w; GetNCDHW(input->dims(), DataLayout::kNCHW, &i_n, &i_c, &i_d, &i_h, &i_w); int o_n, o_c, o_d, o_h, o_w; GetNCDHW(output_grad->dims(), DataLayout::kNCHW, &o_n, &o_c, &o_d, &o_h, &o_w); int group_offset_in = i_c / groups * i_h * i_w * i_d; int group_offset_out = o_c / groups * o_h * o_w * o_d; int group_offset_filter = filter->numel() / groups; // ------------------- cudnn backward algorithm --------------------- cudnnConvolutionBwdDataAlgo_t data_algo{}; cudnnConvolutionBwdFilterAlgo_t filter_algo{}; size_t workspace_size_in_bytes = 0, tmp_size = 0; size_t workspace_size_limit = 0; if (FLAGS_conv_workspace_size_limit > 0 || user_workspace_size > 0) { int64_t max_user_size = std::min(static_cast(FLAGS_conv_workspace_size_limit), user_workspace_size); workspace_size_limit = max_user_size * 1024 * 1024; } Tensor cudnn_workspace; void* cudnn_workspace_ptr = nullptr; if ((input_data || filter_data) && exhaustive_search) { cudnn_workspace = ctx.AllocateTmpTensor( framework::make_ddim( {static_cast(workspace_size_limit)}), dev_ctx); cudnn_workspace_ptr = static_cast(cudnn_workspace.data()); } // TODO(dangqingqing) simplify the following code by SearchAlgorithm in // conv_cudnn_helper.h auto x_dims = framework::vectorize(input->dims()); auto f_dims = framework::vectorize(filter->dims()); auto handle = dev_ctx.cudnn_handle(); bool has_got_bwd_data_ws_size = false; if (input_grad) { T* input_grad_data = input_grad->mutable_data(ctx.GetPlace()); if (exhaustive_search) { AlgorithmsCache& data_algo_cache = ctx.GetKernelConfig>( 0); data_algo = data_algo_cache.GetAlgorithm( x_dims, f_dims, strides, paddings, dilations, 0, [&]() { int returned_algo_count; std::array data_perf_stat; CUDNN_ENFORCE(platform::dynload:: cudnnFindConvolutionBackwardDataAlgorithmEx( handle, cudnn_filter_desc, filter_data, cudnn_output_grad_desc, output_grad_data, cudnn_conv_desc, cudnn_input_desc, input_grad_data, kNUM_CUDNN_BWD_DATA_ALGS, &returned_algo_count, data_perf_stat.data(), cudnn_workspace_ptr, workspace_size_limit)); VLOG(3) << "Perf result: (algo: stat, time, memory)"; for (int i = 0; i < returned_algo_count; ++i) { const auto& stat = data_perf_stat[i]; VLOG(3) << stat.algo << ": " << stat.status << " " << stat.time << " " << stat.memory; } return data_perf_stat[0].algo; }); VLOG(3) << "cuDNN backward data algo " << data_algo; } else if (FLAGS_cudnn_deterministic) { data_algo = CUDNN_CONVOLUTION_BWD_DATA_ALGO_1; } else { #if CUDNN_VERSION >= 7001 using perf_t = cudnnConvolutionBwdDataAlgoPerf_t; int perf_count; int best_algo_idx = 0; std::unique_ptr perf_results( new perf_t[kNUM_CUDNN_BWD_DATA_ALGS]); CUDNN_ENFORCE( platform::dynload::cudnnGetConvolutionBackwardDataAlgorithm_v7( handle, cudnn_filter_desc, // dyDesc: Handle to the previously initialized input // differential // tensor descriptor. cudnn_output_grad_desc, cudnn_conv_desc, // dxDesc: Handle to the previously initialized output tensor // descriptor. cudnn_input_desc, kNUM_CUDNN_BWD_DATA_ALGS, &perf_count, perf_results.get())); data_algo = (perf_results.get())[best_algo_idx].algo; int stride_dim = input->dims().size() - 2; bool blacklist = std::any_of(strides.begin(), strides.begin() + stride_dim, [=](int n) { return n != 1; }); if (blacklist && (static_cast( perf_results[best_algo_idx].algo) == CUDNN_CONVOLUTION_BWD_DATA_ALGO_FFT_TILING || static_cast( perf_results[best_algo_idx].algo) == CUDNN_CONVOLUTION_BWD_DATA_ALGO_FFT)) { data_algo = CUDNN_CONVOLUTION_BWD_DATA_ALGO_1; } CUDNN_ENFORCE( platform::dynload::cudnnGetConvolutionBackwardDataWorkspaceSize( handle, cudnn_filter_desc, cudnn_output_grad_desc, cudnn_conv_desc, cudnn_input_desc, data_algo, &tmp_size)); auto new_workspace_size = std::max(workspace_size_in_bytes, tmp_size); if (new_workspace_size > workspace_size_limit) { VLOG(1) << "Fallback to non-v7 method to find conv algorithm becasue " "the workspace size request(" << new_workspace_size << ") exceeds the limit(" << workspace_size_limit << ")"; #endif CUDNN_ENFORCE( platform::dynload::cudnnGetConvolutionBackwardDataAlgorithm( handle, cudnn_filter_desc, // dyDesc: Handle to the previously initialized input // differential // tensor descriptor. cudnn_output_grad_desc, cudnn_conv_desc, // dxDesc: Handle to the previously initialized output tensor // descriptor. cudnn_input_desc, CUDNN_CONVOLUTION_BWD_DATA_SPECIFY_WORKSPACE_LIMIT, workspace_size_limit, &data_algo)); #if CUDNN_VERSION >= 7001 } else { workspace_size_in_bytes = new_workspace_size; has_got_bwd_data_ws_size = true; } #endif } if (!has_got_bwd_data_ws_size) { CUDNN_ENFORCE( platform::dynload::cudnnGetConvolutionBackwardDataWorkspaceSize( handle, cudnn_filter_desc, cudnn_output_grad_desc, cudnn_conv_desc, cudnn_input_desc, data_algo, &tmp_size)); workspace_size_in_bytes = std::max(workspace_size_in_bytes, tmp_size); } } bool has_got_bwd_filter_ws_size = false; if (filter_grad) { T* filter_grad_data = filter_grad->mutable_data(ctx.GetPlace()); if (exhaustive_search) { AlgorithmsCache& f_algo_cache = ctx.GetKernelConfig< AlgorithmsCache>(1); filter_algo = f_algo_cache.GetAlgorithm( x_dims, f_dims, strides, paddings, dilations, 0, [&]() { int returned_algo_count; std::array filter_perf_stat; CUDNN_ENFORCE( platform::dynload:: cudnnFindConvolutionBackwardFilterAlgorithmEx( handle, cudnn_input_desc, input_data, cudnn_output_grad_desc, output_grad_data, cudnn_conv_desc, cudnn_filter_desc, filter_grad_data, kNUM_CUDNN_BWD_FILTER_ALGS, &returned_algo_count, filter_perf_stat.data(), cudnn_workspace_ptr, workspace_size_limit)); return filter_perf_stat[0].algo; }); VLOG(3) << "cuDNN backward filter algo " << filter_algo; } else if (FLAGS_cudnn_deterministic) { filter_algo = CUDNN_CONVOLUTION_BWD_FILTER_ALGO_1; } else { #if CUDNN_VERSION >= 7001 using perf_t = cudnnConvolutionBwdFilterAlgoPerf_t; int perf_count; int best_algo_idx = 0; std::unique_ptr perf_results( new perf_t[kNUM_CUDNN_BWD_FILTER_ALGS]); CUDNN_ENFORCE( platform::dynload::cudnnGetConvolutionBackwardFilterAlgorithm_v7( handle, cudnn_input_desc, cudnn_output_grad_desc, cudnn_conv_desc, cudnn_filter_desc, kNUM_CUDNN_BWD_FILTER_ALGS, &perf_count, perf_results.get())); filter_algo = (perf_results.get())[best_algo_idx].algo; CUDNN_ENFORCE( platform::dynload::cudnnGetConvolutionBackwardFilterWorkspaceSize( handle, cudnn_input_desc, cudnn_output_grad_desc, cudnn_conv_desc, cudnn_filter_desc, filter_algo, &tmp_size)); auto new_workspace_size = std::max(workspace_size_in_bytes, tmp_size); if (new_workspace_size > workspace_size_limit) { VLOG(1) << "Fallback to non-v7 method to find conv algorithm becasue " "the workspace size request(" << new_workspace_size << ") exceeds the limit(" << workspace_size_limit << ")"; #endif CUDNN_ENFORCE( platform::dynload::cudnnGetConvolutionBackwardFilterAlgorithm( handle, cudnn_input_desc, cudnn_output_grad_desc, cudnn_conv_desc, cudnn_filter_desc, CUDNN_CONVOLUTION_BWD_FILTER_SPECIFY_WORKSPACE_LIMIT, workspace_size_limit, &filter_algo)); #if CUDNN_VERSION >= 7001 } else { workspace_size_in_bytes = new_workspace_size; has_got_bwd_filter_ws_size = true; } #endif } if (!has_got_bwd_filter_ws_size) { CUDNN_ENFORCE( platform::dynload::cudnnGetConvolutionBackwardFilterWorkspaceSize( handle, cudnn_input_desc, cudnn_output_grad_desc, cudnn_conv_desc, cudnn_filter_desc, filter_algo, &tmp_size)); workspace_size_in_bytes = std::max(workspace_size_in_bytes, tmp_size); } } PADDLE_ENFORCE_LE(workspace_size_in_bytes, workspace_size_limit, "workspace_size to be allocated exceeds the limit"); // ------------------- cudnn conv workspace --------------------- if (!cudnn_workspace_ptr) { cudnn_workspace = ctx.AllocateTmpTensor( framework::make_ddim( {static_cast(workspace_size_in_bytes)}), dev_ctx); cudnn_workspace_ptr = static_cast(cudnn_workspace.data()); VLOG(2) << "Cudnn workspace size bwd: " << static_cast(workspace_size_in_bytes) / (1 << 20) << " MB"; } // ------------------- cudnn conv backward data --------------------- ScalingParamType alpha = 1.0f, beta = 0.0f; if (input_grad) { T* input_grad_data = input_grad->mutable_data(ctx.GetPlace()); // Because beta is zero, it is unnecessary to reset input_grad. for (int i = 0; i < groups; i++) { CUDNN_ENFORCE(platform::dynload::cudnnConvolutionBackwardData( handle, &alpha, cudnn_filter_desc, filter_data + i * group_offset_filter, cudnn_output_grad_desc, output_grad_data + i * group_offset_out, cudnn_conv_desc, data_algo, cudnn_workspace_ptr, workspace_size_in_bytes, &beta, cudnn_input_desc, input_grad_data + i * group_offset_in)); } } // ------------------- cudnn conv backward filter --------------------- if (filter_grad) { T* filter_grad_data = filter_grad->mutable_data(ctx.GetPlace()); // Because beta is zero, it is unnecessary to reset filter_grad. for (int i = 0; i < groups; i++) { CUDNN_ENFORCE(platform::dynload::cudnnConvolutionBackwardFilter( handle, &alpha, cudnn_input_desc, input_data + i * group_offset_in, cudnn_output_grad_desc, output_grad_data + i * group_offset_out, cudnn_conv_desc, filter_algo, cudnn_workspace_ptr, workspace_size_in_bytes, &beta, cudnn_filter_desc, filter_grad_data + i * group_offset_filter)); } } } }; /* * Inputs: I, W, dO, ddI, ddW * Outputs: ddO, dW, dI * ddo = conv(ddI, W) + conv(I, ddW) * dW = conv_bp_filter(ddI, dO) * dI = conv_bp_data(ddW, dO) */ template class CUDNNConvDoubleGradOpKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { auto& dev_ctx = ctx.template device_context(); PADDLE_ENFORCE(platform::is_gpu_place(ctx.GetPlace()), "It must use CUDAPlace."); auto X = ctx.Input("Input"); auto W = ctx.Input("Filter"); auto dO = ctx.Input("DOutput"); auto ddX = ctx.Input("DDInput"); auto ddW = ctx.Input("DDFilter"); auto ddO = ctx.Output("DDOutput"); auto dW = ctx.Output("DFilter"); auto dX = ctx.Output("DInput"); const T* x = X->data(); const T* dy = dO->data(); const T* w = W->data(); const T* ddx = nullptr; const T* ddw = nullptr; T *dw, *dx, *ddy; dw = dx = ddy = nullptr; const std::vector& strides = ctx.Attr>("strides"); const std::vector& paddings = ctx.Attr>("paddings"); const std::vector& dilations = ctx.Attr>("dilations"); int groups = ctx.Attr("groups"); bool exhaustive_search = FLAGS_cudnn_exhaustive_search || ctx.Attr("exhaustive_search"); bool deterministic = FLAGS_cudnn_deterministic; if (exhaustive_search && deterministic) { PADDLE_THROW( "Can't set exhaustive_search True and " "FLAGS_cudnn_deterministic True at same time."); } int iwo_group = groups; int c_group = 1; #if CUDNN_VERSION_MIN(7, 0, 1) iwo_group = 1; c_group = groups; #endif auto dtype = platform::CudnnDataType::type; auto handle = dev_ctx.cudnn_handle(); ConvArgs args1{ddX, W, ddO, strides, paddings, dilations}; ConvArgs args2{X, ddW, ddO, strides, paddings, dilations}; ConvArgs args3{ddX, dW, dO, strides, paddings, dilations}; ConvArgs args4{dX, ddW, dO, strides, paddings, dilations}; cudnnConvolutionFwdAlgo_t fwd_algo1 = static_cast(0); cudnnConvolutionFwdAlgo_t fwd_algo2 = static_cast(0); cudnnConvolutionBwdDataAlgo_t data_algo = static_cast(0); cudnnConvolutionBwdFilterAlgo_t filter_algo = static_cast(0); auto layout = GetCudnnTensorFormat(DataLayout::kNCHW); // ddo = conv(ddI, W) + conv(I, ddW) size_t workspace_size = 0; if (ddO) { ddy = ddO->mutable_data(ctx.GetPlace()); args1.handle = handle; args1.idesc.set(*ddX, iwo_group); args1.wdesc.set(*W, layout, iwo_group); args1.odesc.set(*ddO, iwo_group); args1.cdesc.set(dtype, paddings, strides, dilations, c_group); using search1 = SearchAlgorithm; fwd_algo1 = search1::Find(args1, exhaustive_search, false, 0, ctx); workspace_size = search1::GetWorkspaceSize(args1, fwd_algo1); if (ddW) { ddw = ddW->data(); args2.handle = handle; args2.idesc.set(*X, iwo_group); args2.wdesc.set(*ddW, layout, iwo_group); args2.odesc.set(*ddO, iwo_group); args2.cdesc.set(dtype, paddings, strides, dilations, c_group); using search2 = SearchAlgorithm; fwd_algo2 = search2::Find(args2, exhaustive_search, false, 0, ctx); workspace_size = std::max(workspace_size, search2::GetWorkspaceSize(args2, fwd_algo2)); } } if (dW) { dw = dW->mutable_data(ctx.GetPlace()); args3.handle = handle; args3.idesc.set(*ddX, iwo_group); args3.wdesc.set(*dW, layout, iwo_group); args3.odesc.set(*dO, iwo_group); args3.cdesc.set(dtype, paddings, strides, dilations, c_group); using search3 = SearchAlgorithm; filter_algo = search3::Find(args3, exhaustive_search, deterministic, 1, ctx); workspace_size = std::max(workspace_size, search3::GetWorkspaceSize(args3, filter_algo)); } if (ddW && dX) { dx = dX->mutable_data(ctx.GetPlace()); args4.handle = handle; args4.idesc.set(*dX, iwo_group); args4.wdesc.set(*ddW, layout, iwo_group); args4.odesc.set(*dO, iwo_group); args4.cdesc.set(dtype, paddings, strides, dilations, c_group); using search4 = SearchAlgorithm; data_algo = search4::Find(args4, exhaustive_search, deterministic, 2, ctx); workspace_size = std::max(workspace_size, search4::GetWorkspaceSize(args4, data_algo)); } int i_n, i_c, i_d, i_h, i_w; GetNCDHW(X->dims(), DataLayout::kNCHW, &i_n, &i_c, &i_d, &i_h, &i_w); int o_n, o_c, o_d, o_h, o_w; GetNCDHW(dO->dims(), DataLayout::kNCHW, &o_n, &o_c, &o_d, &o_h, &o_w); int group_offset_in = i_c / groups * i_h * i_w * i_d; int group_offset_out = o_c / groups * o_h * o_w * o_d; int group_offset_filter = W->numel() / groups; ScalingParamType alpha = 1.0f, beta = 0.0f; auto wkspace_handle = dev_ctx.cudnn_workspace_handle(); if (ddO) { ddx = ddX->data(); for (int i = 0; i < groups; i++) { wkspace_handle.RunFunc( [&](void* workspace_ptr) { CUDNN_ENFORCE(platform::dynload::cudnnConvolutionForward( handle, &alpha, args1.idesc.desc(), ddx + i * group_offset_in, args1.wdesc.desc(), w + i * group_offset_filter, args1.cdesc.desc(), fwd_algo1, workspace_ptr, workspace_size, &beta, args1.odesc.desc(), ddy + i * group_offset_out)); }, workspace_size); } if (ddW) { for (int i = 0; i < groups; i++) { wkspace_handle.RunFunc( [&](void* workspace_ptr) { CUDNN_ENFORCE(platform::dynload::cudnnConvolutionForward( handle, &alpha, args2.idesc.desc(), x + i * group_offset_in, args2.wdesc.desc(), ddw + i * group_offset_filter, args2.cdesc.desc(), fwd_algo2, workspace_ptr, workspace_size, &alpha, args2.odesc.desc(), ddy + i * group_offset_out)); }, workspace_size); } } } if (dW) { ddx = ddX->data(); for (int i = 0; i < groups; i++) { wkspace_handle.RunFunc( [&](void* workspace_ptr) { CUDNN_ENFORCE(platform::dynload::cudnnConvolutionBackwardFilter( handle, &alpha, args3.idesc.desc(), ddx + i * group_offset_in, args3.odesc.desc(), dy + i * group_offset_out, args3.cdesc.desc(), filter_algo, workspace_ptr, workspace_size, &beta, args3.wdesc.desc(), dw + i * group_offset_filter)); }, workspace_size); } } if (dX && ddW) { ddw = ddW->data(); for (int i = 0; i < groups; i++) { wkspace_handle.RunFunc( [&](void* workspace_ptr) { CUDNN_ENFORCE(platform::dynload::cudnnConvolutionBackwardData( handle, &alpha, args4.wdesc.desc(), ddw + i * group_offset_filter, args4.odesc.desc(), dy + i * group_offset_out, args4.cdesc.desc(), data_algo, workspace_ptr, workspace_size, &beta, args4.idesc.desc(), dx + i * group_offset_in)); }, workspace_size); } } } }; } // namespace operators } // namespace paddle namespace plat = paddle::platform; REGISTER_OP_KERNEL(conv2d, CUDNN, plat::CUDAPlace, paddle::operators::CUDNNConvOpKernel, paddle::operators::CUDNNConvOpKernel, paddle::operators::CUDNNConvOpKernel); REGISTER_OP_KERNEL(conv2d_grad, CUDNN, plat::CUDAPlace, paddle::operators::CUDNNConvGradOpKernel, paddle::operators::CUDNNConvGradOpKernel, paddle::operators::CUDNNConvGradOpKernel); REGISTER_OP_KERNEL( conv2d_grad_grad, CUDNN, plat::CUDAPlace, paddle::operators::CUDNNConvDoubleGradOpKernel, paddle::operators::CUDNNConvDoubleGradOpKernel, paddle::operators::CUDNNConvDoubleGradOpKernel); REGISTER_OP_KERNEL(conv3d, CUDNN, plat::CUDAPlace, paddle::operators::CUDNNConvOpKernel, paddle::operators::CUDNNConvOpKernel, paddle::operators::CUDNNConvOpKernel); REGISTER_OP_KERNEL(conv3d_grad, CUDNN, plat::CUDAPlace, paddle::operators::CUDNNConvGradOpKernel, paddle::operators::CUDNNConvGradOpKernel);