# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import numpy as np from ..fluid.framework import Variable from ..fluid.framework import unique_name from ..fluid.framework import _current_expected_place from ..fluid.framework import dygraph_only from ..fluid.initializer import Constant from ..fluid.layers import core from ..fluid.layer_helper import LayerHelper from ..fluid.data_feeder import check_variable_and_dtype, check_type, check_dtype, convert_dtype from ..fluid.framework import convert_np_dtype_to_dtype_, in_dygraph_mode, _varbase_creator, device_guard, OpProtoHolder from ..fluid.layers import fill_constant from paddle.common_ops_import import * # TODO: define functions to get create a tensor from ..fluid.layers import crop_tensor #DEFINE_ALIAS from ..fluid.layers import fill_constant #DEFINE_ALIAS from ..fluid.layers import linspace #DEFINE_ALIAS import paddle __all__ = [ 'to_tensor', 'crop_tensor', 'diag', 'fill_constant', # 'get_tensor_from_selected_rows', 'linspace', 'ones', 'ones_like', 'zeros', 'zeros_like', 'arange', 'eye', 'full', 'full_like', 'triu', 'tril', 'meshgrid' ] @dygraph_only def to_tensor(data, dtype=None, place=None, stop_gradient=True): """ Constructs a ``paddle.Tensor`` or ``paddle.ComplexTensor`` from ``data`` , which can be scalar, tuple, list, numpy\.ndarray, paddle\.Tensor, paddle\.ComplexTensor. If the ``data`` is already a tensor, and ``dtype`` or ``place`` does't change, no copy will be performed and return origin tensor, otherwise a new tensor will be constructed and returned. Similarly, if the data is an numpy\.ndarray of with the same ``dtype`` and the current place is cpu, no copy will be performed. The ``ComplexTensor`` is a unique type of paddle. If x is ``ComplexTensor``, then ``x.real`` is the real part, and ``x.imag`` is the imaginary part. Args: data(scalar|tuple|list|ndarray|Tensor|ComplexTensor): Initial data for the tensor. Can be a scalar, list, tuple, numpy\.ndarray, paddle\.Tensor, paddle\.ComplexTensor. dtype(str|np.dtype, optional): The desired data type of returned tensor. Can be 'bool' , 'float16' , 'float32' , 'float64' , 'int8' , 'int16' , 'int32' , 'int64' , 'uint8'. And 'complex64' , 'complex128' only for ComplexTensor. Default: None, for float point number, get type from ``get_default_type``, for other type, infers from ``data`` . place(CPUPlace|CUDAPinnedPlace|CUDAPlace, optional): The place to allocate Tensor. Can be CPUPlace, CUDAPinnedPlace, CUDAPlace. Default: None, means global place. stop_gradient(bool, optional): Whether to block the gradient propagation of Autograd. Default: True. Returns: Tensor: A Tensor or ComplexTensor constructed from ``data`` . Raises: TypeError: If the data type of ``data`` is not scalar, list, tuple, numpy.ndarray, paddle.Tensor, paddle.ComplexTensor ValueError: If ``data`` is tuple|list, it can't contain nested tuple|list with different lengths , such as: [[1, 2], [3, 4, 5]] TypeError: If ``dtype`` is not bool, float16, float32, float64, int8, int16, int32, int64, uint8, complex64, complex128 ValueError: If ``place`` is not paddle.CPUPlace, paddle.CUDAPinnedPlace, paddle.CUDAPlace Examples: .. code-block:: python import paddle import numpy as np paddle.disable_static() type(paddle.to_tensor(1)) # paddle.to_tensor(1) # Tensor: generated_tensor_0 # - place: CUDAPlace(0) # allocate on global default place CPU:0 # - shape: [1] # - layout: NCHW # - dtype: int64_t # - data: [1] x = paddle.to_tensor(1) paddle.to_tensor(x, dtype='int32', place=paddle.CPUPlace()) # A new tensor will be constructed due to different dtype or place # Tensor: generated_tensor_01 # - place: CPUPlace # - shape: [1] # - layout: NCHW # - dtype: int # - data: [1] paddle.to_tensor((1.1, 2.2), place=paddle.CUDAPinnedPlace()) # Tensor: generated_tensor_1 # - place: CUDAPinnedPlace # - shape: [2] # - layout: NCHW # - dtype: double # - data: [1.1 2.2] paddle.to_tensor([[0.1, 0.2], [0.3, 0.4]], place=paddle.CUDAPlace(0), stop_gradient=False) # Tensor: generated_tensor_2 # - place: CUDAPlace(0) # - shape: [2, 2] # - layout: NCHW # - dtype: double # - data: [0.1 0.2 0.3 0.4] type(paddle.to_tensor([[1+1j, 2], [3+2j, 4]]), dtype='complex64') # paddle.to_tensor([[1+1j, 2], [3+2j, 4]], dtype='complex64') # ComplexTensor[real]: generated_tensor_0.real # - place: CUDAPlace(0) # - shape: [2, 2] # - layout: NCHW # - dtype: float # - data: [1 2 3 4] # ComplexTensor[imag]: generated_tensor_0.imag # - place: CUDAPlace(0) # - shape: [2, 2] # - layout: NCHW # - dtype: float # - data: [1 0 2 0] """ if place is None: place = _current_expected_place() elif not isinstance(place, (core.CPUPlace, core.CUDAPinnedPlace, core.CUDAPlace)): raise ValueError( "'place' must be any of paddle.Place, paddle.CUDAPinnedPlace, paddle.CUDAPlace" ) #Todo(zhouwei): Support allocate tensor on any other specified card if isinstance(place, core.CUDAPlace) and isinstance( _current_expected_place(), core.CUDAPlace) and place._get_device_id( ) != _current_expected_place()._get_device_id(): place = _current_expected_place() if not isinstance(data, np.ndarray): if np.isscalar(data) and not isinstance(data, str): data = np.array([data]) elif isinstance(data, (list, tuple)): data = np.array(data) if data.dtype == np.object: raise ValueError( "\n\tFaild to convert input data to a regular ndarray :\n\t - Usually " "this means the input data contains nested lists with different lengths. " ) elif isinstance(data, paddle.Tensor): data.stop_gradient = stop_gradient if not data.place._equals(place): data = data._copy_to(place, False) if dtype: if convert_dtype(dtype) != convert_dtype(data.dtype): return data.astype(convert_dtype(dtype)) return data elif isinstance(data, paddle.ComplexTensor): return data else: raise TypeError( "Can't constructs a 'paddle.Tensor' with data type {}, data type must be scalar|list|tuple|numpy.ndarray|paddle.Tensor|paddle.ComplexTensor". format(type(data))) if not np.iscomplexobj(data): if dtype: dtype = convert_dtype(dtype) elif data.dtype in ['float16', 'float32', 'float64']: dtype = paddle.framework.get_default_dtype() if dtype and dtype != data.dtype: data = data.astype(dtype) return paddle.Tensor( value=data, place=place, persistable=False, zero_copy=True, stop_gradient=stop_gradient) else: if dtype: dtype = convert_dtype(dtype) else: dtype = paddle.framework.get_default_dtype() dtype = 'complex64' if dtype in ['float16', 'float32' ] else 'complex128' if dtype != data.dtype: data = data.astype(dtype) name = unique_name.generate('generated_tensor') real_tensor = paddle.Tensor( value=data.real, place=place, zero_copy=True, name=name + ".real", stop_gradient=stop_gradient) imag_tensor = paddle.Tensor( value=data.imag, place=place, zero_copy=True, name=name + ".imag", stop_gradient=stop_gradient) return paddle.ComplexTensor(real_tensor, imag_tensor) def full_like(x, fill_value, dtype=None, name=None): """ This function creates a tensor filled with ``fill_value`` which has identical shape of ``x`` and ``dtype``. If the ``dtype`` is None, the data type of Tensor is same with ``x``. Args: x(Tensor): The input tensor which specifies shape and data type. The data type can be bool, float16, float32, float64, int32, int64. fill_value(bool|float|int): The value to fill the tensor with. Note: this value shouldn't exceed the range of the output data type. dtype(np.dtype|str, optional): The data type of output. The data type can be one of bool, float16, float32, float64, int32, int64. The default value is None, which means the output data type is the same as input. name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name` Returns: Tensor: Tensor which is created according to ``x``, ``fill_value`` and ``dtype``. Raises: TypeError: The data type of ``x`` must be one of bool, float16, float32, float64, int32, int64. TypeError: The ``dtype`` must be one of bool, float16, float32, float64, int32, int64 and None. Examples: .. code-block:: python import paddle import numpy as np paddle.disable_static() # Now we are in imperative mode input = paddle.full(shape=[2, 3], fill_value=0.0, dtype='float32', name='input') output = paddle.full_like(input, 2.0) # [[2. 2. 2.] # [2. 2. 2.]] """ if dtype is None: dtype = x.dtype else: if not isinstance(dtype, core.VarDesc.VarType): dtype = convert_np_dtype_to_dtype_(dtype) if in_dygraph_mode(): return core.ops.fill_any_like(x, 'value', fill_value, 'dtype', dtype) helper = LayerHelper("full_like", **locals()) check_variable_and_dtype( x, 'x', ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'], 'full_like') check_dtype(dtype, 'dtype', ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'], 'full_like/zeros_like/ones_like') out = helper.create_variable_for_type_inference(dtype=dtype) helper.append_op( type='fill_any_like', inputs={'X': [x]}, attrs={'value': fill_value, "dtype": dtype}, outputs={'Out': [out]}) out.stop_gradient = True return out def ones(shape, dtype=None, name=None): """ The OP creates a tensor of specified :attr:`shape` and :attr:`dtype`, and fills it with 1. Args: shape(tuple|list|Tensor): Shape of the Tensor to be created, the data type of shape is int32 or int64. dtype(np.dtype|str, optional): Data type of output Tensor, it supports bool, float16, float32, float64, int32 and int64. Default: if None, the data type is 'float32'. name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name` Returns: Tensor: A tensor of data type :attr:`dtype` with shape :attr:`shape` and all elements set to 1. Raises: TypeError: The ``dtype`` must be one of bool, float16, float32, float64, int32, int64 and None. TypeError: The ``shape`` must be one of list, tuple and Tensor. The data type of ``shape`` must be int32 or int64 when it's a Tensor. Examples: .. code-block:: python import paddle paddle.disable_static() # default dtype for ones OP data1 = paddle.ones(shape=[3, 2]) # [[1. 1.] # [1. 1.] # [1. 1.]] data2 = paddle.ones(shape=[2, 2], dtype='int32') # [[1 1] # [1 1]] # shape is a Tensor shape = paddle.fill_constant(shape=[2], dtype='int32', value=2) data3 = paddle.ones(shape=shape, dtype='int32') # [[1 1] # [1 1]] """ if dtype is None: dtype = 'float32' return fill_constant(value=1.0, shape=shape, dtype=dtype, name=name) def ones_like(x, dtype=None, name=None): """ :alias_main: paddle.ones_like :alias: paddle.tensor.ones_like, paddle.tensor.creation.ones_like This OP returns a Tensor filled with the value 1, with the same shape and data type (use ``dtype`` if ``dtype`` is not None) as ``x``. Args: x(Tensor): The input tensor which specifies shape and dtype. The dtype of ``x`` can be bool, float16, float32, float64, int32, int64. dtype(str|np.dtype|core.VarDesc.VarType, optional): The data type of the output tensor. Supported data types: bool, float16, float32, float64, int32, int64. If ``dtype`` is None, the data type is the same as ``x``. Default is None. name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`. Returns: Tensor: A Tensor filled with the value 1, with the same shape and data type (use ``dtype`` if ``dtype`` is not None) as ``x``. Raise: TypeError: If ``dtype`` is not None and is not bool, float16, float32, float64, int32 or int64. Examples: .. code-block:: python import paddle import numpy as np paddle.disable_static() x = paddle.to_tensor(np.array([1,2,3], dtype='float32')) out1 = paddle.zeros_like(x) # [1., 1., 1.] out2 = paddle.zeros_like(x, dtype='int32') # [1, 1, 1] """ return full_like(x=x, fill_value=1, dtype=dtype, name=name) def zeros(shape, dtype=None, name=None): """ The OP creates a tensor of specified :attr:`shape` and :attr:`dtype`, and fills it with 0. Args: shape(tuple|list|Tensor): Shape of the Tensor to be created, the data type of ``shape`` is int32 or int64. dtype(np.dtype|str, optional): Data type of output Tensor, it supports bool, float16, float32, float64, int32 and int64. Default: if None, the date type is float32. name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`. Returns: Tensor: A tensor of data type :attr:`dtype` with shape :attr:`shape` and all elements set to 0. Raises: TypeError: The ``dtype`` must be one of bool, float16, float32, float64, int32, int64 and None. TypeError: The ``shape`` must be one of list, tuple and Tensor. The data type of ``shape`` must be int32 or int64 when it's a Tensor. Examples: .. code-block:: python import paddle paddle.disable_static() # Now we are in imperative mode data = paddle.zeros(shape=[3, 2], dtype='float32') # [[0. 0.] # [0. 0.] # [0. 0.]] data = paddle.zeros(shape=[2, 2]) # [[0. 0.] # [0. 0.]] # shape is a Tensor shape = paddle.fill_constant(shape=[2], dtype='int32', value=2) data3 = paddle.zeros(shape=shape, dtype='int32') # [[0 0] # [0 0]] """ if dtype is None: dtype = 'float32' return fill_constant(value=0.0, shape=shape, dtype=dtype, name=name) def zeros_like(x, dtype=None, name=None): """ :alias_main: paddle.zeros_like :alias: paddle.tensor.zeros_like, paddle.tensor.creation.zeros_like This OP returns a Tensor filled with the value 0, with the same shape and data type (use ``dtype`` if ``dtype`` is not None) as ``x``. Args: x(Tensor): The input tensor which specifies shape and dtype. The dtype of ``x`` can be bool, float16, float32, float64, int32, int64. dtype(str|np.dtype|core.VarDesc.VarType, optional): The data type of the output tensor. Supported data types: bool, float16, float32, float64, int32, int64. If ``dtype`` is None, the data type is the same as ``x``. Default is None. name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`. Returns: Tensor: A Tensor filled with the value 0, with the same shape and data type (use ``dtype`` if ``dtype`` is not None) as ``x``. Raise: TypeError: If ``dtype`` is not None and is not bool, float16, float32, float64, int32 or int64. Examples: .. code-block:: python import paddle import numpy as np paddle.disable_static() x = paddle.to_tensor(np.array([1,2,3], dtype='float32')) out1 = paddle.zeros_like(x) # [0., 0., 0.] out2 = paddle.zeros_like(x, dtype='int32') # [0, 0, 0] """ return full_like(x=x, fill_value=0, dtype=dtype, name=name) def eye(num_rows, num_columns=None, dtype=None, name=None): """ This function constructs 2-D Tensor with ones on the diagonal and zeros elsewhere. Args: num_rows(int): the number of rows in each batch Tensor. num_columns(int, optional): the number of columns in each batch Tensor. If None, default: num_rows. dtype(np.dtype|str, optional): The data type of the returned Tensor. It should be int32, int64, float16, float32, float64. Default: if None, the data type is float32. name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name` Returns: Tensor: An identity Tensor or LoDTensor of shape [num_rows, num_columns]. Raises: TypeError: The ``dtype`` must be one of float16, float32, float64, int32 int64 and None. TypeError: The ``num_columns`` must be non-negative int. Examples: .. code-block:: python import paddle paddle.disable_static() # Now we are in imperative mode data = paddle.eye(3, dtype='int32') # [[1 0 0] # [0 1 0] # [0 0 1]] data = paddle.eye(2, 3, dtype='int32') # [[1 0 0] # [0 1 0]] """ if dtype is None: dtype = 'float32' if num_columns is None: num_columns = num_rows return paddle.fluid.layers.eye(num_rows=num_rows, num_columns=num_columns, batch_shape=None, dtype=dtype, name=name) def full(shape, fill_value, dtype=None, name=None): """ This Op return a Tensor with the ``fill_value`` which size is same as ``shape``. Args: shape(list|tuple|Tensor): Shape of the Tensor to be created. The data type is ``int32`` or ``int64`` . If ``shape`` is a list or tuple, the elements of it should be integers or Tensors with shape [1]. If ``shape`` is an Tensor, it should be an 1-D Tensor . fill_value(bool|float|int|Tensor): The constant value used to initialize the Tensor to be created. If ``fill_value`` is an Tensor, it must be an 1-D Tensor. dtype(np.dtype|str, optional): Data type of the output Tensor which can be float16, float32, float64, int32, int64, if dytpe is `None`, the data type of created Tensor is `float32` name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`. Returns: Tensor: Tensor which is created according to ``shape``, ``fill_value`` and ``dtype``. Raises: TypeError: The ``dtype`` must be one of None, bool, float16, float32, float64, int32 and int64. TypeError: The ``shape`` must be one of Tensor, list and tuple. The data type of ``shape`` must be int32 or int64 when the it's a Tensor Examples: .. code-block:: python import paddle paddle.disable_static() # Now we are in imperative mode data1 = paddle.full(shape=[2,1], fill_value=0, dtype='int64') #[[0] # [0]] # attr shape is a list which contains Tensor. positive_2 = paddle.fill_constant([1], "int32", 2) data3 = paddle.full(shape=[1, positive_2], dtype='float32', fill_value=1.5) # [[1.5 1.5]] # attr shape is a Tensor. shape = paddle.fill_constant([2], "int32", 2) data4 = paddle.full(shape=shape, dtype='bool', fill_value=True) # [[True True] # [True True]] # attr fill_value is a Tensor. val = paddle.fill_constant([1], "float32", 2.0) data5 = paddle.full(shape=[2,1], fill_value=val, dtype='float32') # [[2.0] # [2.0]] """ if dtype is None: dtype = 'float32' return fill_constant(shape=shape, dtype=dtype, value=fill_value, name=name) def arange(start=0, end=None, step=1, dtype=None, name=None): """ :alias_main: paddle.arange :alias: paddle.tensor.arange, paddle.tensor.creation.arange This OP returns a 1-D Tensor with spaced values within a given interval. Values are generated into the half-open interval [``start``, ``end``) with the ``step``. (the interval including ``start`` but excluding ``end``). If ``dtype`` is float32 or float64, we advise adding a small epsilon to ``end`` to avoid floating point rounding errors when comparing against ``end``. Parameters: start(float|int|Tensor): Start of interval. The interval includes this value. If ``end`` is None, the half-open interval is [0, ``start``). If ``start`` is a Tensor, it is a 1-D Tensor with shape [1], with data type int32, int64, float32, float64. Default is 0. end(float|int|Tensor, optional): End of interval. The interval does not include this value. If ``end`` is a Tensor, it is a 1-D Tensor with shape [1], with data type int32, int64, float32, float64. If ``end`` is None, the half-open interval is [0, ``start``). Default is None. step(float|int|Tensor, optional): Spacing between values. For any out, it is the istance between two adjacent values, out[i+1] - out[i]. If ``step`` is a Tensor, it is a 1-D Tensor with shape [1], with data type int32, int64, float32, float64. Default is 1. dtype(str|np.dtype|core.VarDesc.VarType, optional): The data type of the output tensor. Supported data types: int32, int64, float32, float64. If ``dytpe`` is None, the data type is float32. Default is None. name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`. Returns: Tensor: A 1-D Tensor with values from the interval [``start``, ``end``) taken with common difference ``step`` beginning from ``start``. Its data type is set by ``dtype``. Raises: TypeError: If ``dtype`` is not int32, int64, float32, float64. examples: .. code-block:: python import paddle import numpy as np paddle.disable_static() out1 = paddle.arange(5) # [0, 1, 2, 3, 4] out2 = paddle.arange(3, 9, 2.0) # [3, 5, 7] # use 4.999 instead of 5.0 to avoid floating point rounding errors out3 = paddle.arange(4.999, dtype='float32') # [0., 1., 2., 3., 4.] start_var = paddle.to_tensor(np.array([3])) out4 = paddle.arange(start_var, 7) # [3, 4, 5, 6] """ if dtype is None: dtype = 'int64' if end is None: end = start start = 0 return paddle.fluid.layers.range(start, end, step, dtype, name) def _tril_triu_op(helper): """Base op of tril_op and triu_op """ op_type = helper.layer_type x = helper.kwargs.get('x', None) assert x is not None, 'x cannot be None in {}'.format(op_type) check_variable_and_dtype(x, 'x', ['float32', 'float64', 'int32', 'int64'], op_type) if len(x.shape) < 2: raise ValueError("x shape in {} must be at least 2-D".format(op_type)) diagonal = helper.kwargs.get('diagonal', 0) if not isinstance(diagonal, (int, )): raise TypeError("diagonal in {} must be a python Int".format(op_type)) name = helper.kwargs.get('name', None) if name is None: out = helper.create_variable_for_type_inference(dtype=x.dtype) else: out = helper.create_variable( name=name, dtype=x.dtype, persistable=False) helper.append_op( type="tril_triu", inputs={"X": x}, attrs={ "diagonal": diagonal, "lower": True if op_type == 'tril' else False, }, outputs={"Out": out}, ) return out def tril(x, diagonal=0, name=None): """ :alias_main: paddle.tril :alias: paddle.tril,paddle.tensor.tril,paddle.tensor.creation.tril This op returns the lower triangular part of a matrix (2-D tensor) or batch of matrices :attr:`x`, the other elements of the result tensor are set to 0. The lower triangular part of the matrix is defined as the elements on and below the diagonal. Args: x (Variable): The input variable x which is a Tensor. Support data types: ``float64``, ``float32``, ``int32``, ``int64``. diagonal (int, optional): The diagonal to consider, default value is 0. If :attr:`diagonal` = 0, all elements on and below the main diagonal are retained. A positive value includes just as many diagonals above the main diagonal, and similarly a negative value excludes just as many diagonals below the main diagonal. The main diagonal are the set of indices :math:`\{(i, i)\}` for :math:`i \in [0, \min\{d_{1}, d_{2}\} - 1]` where :math:`d_{1}, d_{2}` are the dimensions of the matrix. name (str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`. Returns: Variable: Tensor, results of lower triangular operation by the specified diagonal of input tensor x, it's data type is the same as x's Tensor. Raises: TypeError: diagonal is not a int type. ValueError: dimension of :attr:`x` is less than 2. Examples: .. code-block:: python import numpy as np import paddle data = np.arange(1, 13, dtype="int64").reshape(3,-1) # array([[ 1, 2, 3, 4], # [ 5, 6, 7, 8], # [ 9, 10, 11, 12]]) paddle.disable_static() x = paddle.to_variable(data) tril1 = paddle.tensor.tril(x) # array([[ 1, 0, 0, 0], # [ 5, 6, 0, 0], # [ 9, 10, 11, 0]]) # example 2, positive diagonal value tril2 = paddle.tensor.tril(x, diagonal=2) # array([[ 1, 2, 3, 0], # [ 5, 6, 7, 8], # [ 9, 10, 11, 12]]) # example 3, negative diagonal value tril3 = paddle.tensor.tril(x, diagonal=-1) # array([[ 0, 0, 0, 0], # [ 5, 0, 0, 0], # [ 9, 10, 0, 0]]) """ if in_dygraph_mode(): op = getattr(core.ops, 'tril_triu') return op(x, 'diagonal', diagonal, "lower", True) return _tril_triu_op(LayerHelper('tril', **locals())) def triu(x, diagonal=0, name=None): """ :alias_main: paddle.triu :alias: paddle.triu,paddle.tensor.triu,paddle.tensor.creation.triu This op returns the upper triangular part of a matrix (2-D tensor) or batch of matrices :attr:`x`, the other elements of the result tensor are set to 0. The upper triangular part of the matrix is defined as the elements on and above the diagonal. Args: x (Variable): The input variable x which is a Tensor. Support data types: ``float64``, ``float32``, ``int32``, ``int64``. diagonal (int, optional): The diagonal to consider, default value is 0. If :attr:`diagonal` = 0, all elements on and above the main diagonal are retained. A positive value excludes just as many diagonals above the main diagonal, and similarly a negative value includes just as many diagonals below the main diagonal. The main diagonal are the set of indices :math:`\{(i, i)\}` for :math:`i \in [0, \min\{d_{1}, d_{2}\} - 1]` where :math:`d_{1}, d_{2}` are the dimensions of the matrix. name (str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`. Returns: Variable: Tensor, results of upper triangular operation by the specified diagonal of input tensor x, it's data type is the same as x's Tensor. Raises: TypeError: diagonal is not a int type. ValueError: dimension of :attr:`x` is less than 2. Examples: .. code-block:: python import numpy as np import paddle data = np.arange(1, 13, dtype="int64").reshape(3,-1) # array([[ 1, 2, 3, 4], # [ 5, 6, 7, 8], # [ 9, 10, 11, 12]]) paddle.disable_static() # example 1, default diagonal x = paddle.to_variable(data) triu1 = paddle.tensor.triu(x) # array([[ 1, 2, 3, 4], # [ 0, 6, 7, 8], # [ 0, 0, 11, 12]]) # example 2, positive diagonal value triu2 = paddle.tensor.triu(x, diagonal=2) # array([[0, 0, 3, 4], # [0, 0, 0, 8], # [0, 0, 0, 0]]) # example 3, negative diagonal value triu3 = paddle.tensor.triu(x, diagonal=-1) # array([[ 1, 2, 3, 4], # [ 5, 6, 7, 8], # [ 0, 10, 11, 12]]) """ if in_dygraph_mode(): op = getattr(core.ops, 'tril_triu') return op(x, 'diagonal', diagonal, "lower", False) return _tril_triu_op(LayerHelper('triu', **locals())) def meshgrid(*args, **kwargs): """ :alias_main: paddle.meshgrid :alias: paddle.meshgrid,paddle.tensor.meshgrid,paddle.tensor.creation.meshgrid This op takes a list of N tensors as input *args, each of which is 1-dimensional vector, and creates N-dimensional grids. Args: *args(Variable|list of Variable) : tensors (tuple(list) of tensor): the shapes of input k tensors are (N1,), (N2,),..., (Nk,). Support data types: ``float64``, ``float32``, ``int32``, ``int64``. **kwargs (optional): Currently, we only accept name in **kwargs The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`. Returns: Variable: k tensors. The shape of each tensor is (N1, N2, ..., Nk) Examples: .. code-block:: python import paddle import paddle.fluid as fluid import numpy as np x = fluid.data(name='x', shape=[100], dtype='int32') y = fluid.data(name='y', shape=[200], dtype='int32') input_1 = np.random.randint(0, 100, [100, ]).astype('int32') input_2 = np.random.randint(0, 100, [200, ]).astype('int32') exe = fluid.Executor(place=fluid.CPUPlace()) grid_x, grid_y = paddle.tensor.meshgrid(x, y) res_1, res_2 = exe.run(fluid.default_main_program(), feed={'x': input_1, 'y': input_2}, fetch_list=[grid_x, grid_y]) #the shape of res_1 is (100, 200) #the shape of res_2 is (100, 200) .. code-block:: python #example 2: in dygraph mode import paddle import numpy as np paddle.disable_static() input_3 = np.random.randint(0, 100, [100, ]).astype('int32') input_4 = np.random.randint(0, 100, [200, ]).astype('int32') tensor_3 = paddle.to_tensor(input_3) tensor_4 = paddle.to_tensor(input_4) grid_x, grid_y = paddle.tensor.meshgrid(tensor_3, tensor_4) #the shape of grid_x is (100, 200) #the shape of grid_y is (100, 200) """ if len(args) == 1 and isinstance(args[0], (list, tuple)): args = args[0] if in_dygraph_mode(): num = len(args) out = core.ops.meshgrid(list(args), num) return out name = kwargs.get("name", None) helper = LayerHelper('meshgrid', **locals()) if not isinstance(args, (list, tuple)): raise TypeError("The type of input args in meshgrid should be list.") for id, input_ in enumerate(args): check_dtype(input_.dtype, 'create data type', ['float16', 'float32', 'float64', 'int32', 'int64'], 'meshgrid') num = len(args) out = [ helper.create_variable_for_type_inference(dtype=args[i].dtype) for i in range(num) ] helper.append_op( type='meshgrid', inputs={'X': list(args)}, outputs={'Out': out}) return out def diag(x, offset=0, padding_value=0, name=None): """ If ``x`` is a vector (1-D tensor), a 2-D square tensor whth the elements of ``x`` as the diagonal is returned. If ``x`` is a matrix (2-D tensor), a 1-D tensor with the diagonal elements of ``x`` is returned. The argument ``offset`` controls the diagonal offset: If ``offset`` = 0, it is the main diagonal. If ``offset`` > 0, it is superdiagonal. If ``offset`` < 0, it is subdiagonal. Args: x (Tensor): The input tensor. Its shape is either 1-D or 2-D. Its data type should be float32, float64, int32, int64. offset (int, optional): The diagonal offset. A positive value represents superdiagonal, 0 represents the main diagonal, and a negative value represents subdiagonal. padding_value (int|float, optional): Use this value to fill the area outside the specified diagonal band. Only takes effect when the input is a 1-D Tensor. The default value is 0. name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`. Returns: Tensor, a square matrix or a vector. The output data type is the same as input data type. Examples: .. code-block:: python import paddle paddle.disable_static() x = paddle.to_tensor([1, 2, 3]) y = paddle.diag(x) print(y.numpy()) # [[1 0 0] # [0 2 0] # [0 0 3]] y = paddle.diag(x, offset=1) print(y.numpy()) # [[0 1 0 0] # [0 0 2 0] # [0 0 0 3] # [0 0 0 0]] y = paddle.diag(x, padding_value=6) print(y.numpy()) # [[1 6 6] # [6 2 6] # [6 6 3]] .. code-block:: python import paddle paddle.disable_static() x = paddle.to_tensor([[1, 2, 3], [4, 5, 6]]) y = paddle.diag(x) print(y.numpy()) # [1 5] y = paddle.diag(x, offset=1) print(y.numpy()) # [2 6] y = paddle.diag(x, offset=-1) print(y.numpy()) # [4] """ if in_dygraph_mode(): return core.ops.diag_v2(x, "offset", offset, "padding_value", padding_value) check_type(x, 'x', (Variable), 'diag_v2') check_dtype(x.dtype, 'x', ['float32', 'float64', 'int32', 'int64'], 'diag_v2') check_type(offset, 'offset', (int), 'diag_v2') check_type(padding_value, 'padding_value', (int, float), 'diag_v2') if len(x.shape) != 1 and len(x.shape) != 2: raise ValueError( "The dimension of input x must be either 1 or 2, but received {}". format(len(x.shape))) helper = LayerHelper("diag_v2", **locals()) out = helper.create_variable_for_type_inference(dtype=x.dtype) helper.append_op( type='diag_v2', inputs={'X': x}, outputs={'Out': out}, attrs={'offset': offset, 'padding_value': padding_value}) out.stop_gradient = True return out