# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import numpy as np from .. import core from ..framework import Program from ..executor import global_scope class InferenceTranspiler(object): ''' Convert the fluid program to optimized inference program. There are several optimizations: - fuse convolution and batch normalization - fuse batch normalization and relu (MKLDNN only) Examples: .. code-block:: python # As InferenceTranspiler will modify the original program, # please clone before use it. inference_transpiler_program = program.clone() t = fluid.InferenceTranspiler() t.transpile(inference_transpiler_program, place) ''' def transpile(self, program, place, scope=None): ''' Run the transpiler. Args: program (Program): program to transpile place (Place): inference place scope (Scope|None): inference Scope ''' if not isinstance(program, Program): raise TypeError("program should be as Program type") if not isinstance(place, core.CPUPlace) and not isinstance( place, core.CUDAPlace): raise TypeError("place should be as CPUPlace/CUDAPlace type") if scope is None: scope = global_scope() if not isinstance(scope, core.Scope): raise TypeError("scope should be as Scope type or None") self._fuse_batch_norm(program, place, scope) self._fuse_relu_mkldnn(program) def _fuse_relu_mkldnn(self, program): ''' Transpile the program by fused relu activation for MKLDNN program. Relu activation following batch norm OP can be fused by adding :math:`fuse_with_relu` attribute to batch norm OP. The result of fuse is: - before: - batch_norm->relu->any_other_op - after: - batch_norm->any_other_op :param program: program to transpile :type program: Program ''' use_mkldnn = bool(os.getenv("FLAGS_use_mkldnn", False)) if not use_mkldnn: return self.block = program.block(0) i = 0 while i < len(self.block.ops) - 1: current_op = self.block.ops[i] if current_op.type in ['batch_norm']: next_op = self.block.ops[i + 1] if next_op.type == 'relu': # modify bnorm OP to include relu current_op.set_attr("fuse_with_relu", True) # remove relu OP self.block._remove_op(i + 1) i = i + 1 self._remove_unused_var() # TODO(luotao): use clone() method to flush the program.desc in force, # since some large program.desc will not be flushed immediately. # And a better solution will be considered later. program = program.clone() def _fuse_batch_norm(self, program, place, scope): ''' Transpile the program by fused batch normalization. The batch normalization followed the convolution or fully connected layer can be integrated with them. Doing so will give us a forward acceleration, especially in environments like mobile or embedded. For input :math:`X`: - Conv process: :math:`X = input * W + bias` - Batch norm process: :math:`X' = (X - mean) / std` - Scale Process: :math:`Y = a * X' + b` After fuse into one operation: .. math:: Y &= (input * W + bias - mean) / std * a + b \\\\ &= input * a * W / std + ((bias - mean) / std * a + b) The operator transformation is: - before: - conv->batch_norm->any_other_op (bias == 0) - conv->elementwise_add->batch_norm->any_other_op (bias != 0) - after: - conv->elementwise_add->any_other_op The transpile stages are: 1. insert elementwise_add op when bias == 0. 2. fuse the batch_norm's parameters to conv and elementwise_add operators. 3. remove batch_norm ops which are not used in any other ops. 4. adjust the input of any_other_op to be the output of elementwise_add operator. 5. remove unused variables. Args: program (Program): program to transpile place (Place): inference place scope (Scope): inference Scope ''' self.scope = scope self.place = place self.block = program.block(0) self.input_map = {} # store the input names should be adjusted i = 0 while i < len(self.block.ops) - 2: current_op = self.block.ops[i] # TODO(luotao1): consider only conv2d now. fc would be delt later. if current_op.type in ['conv2d']: # TODO(luotao1): consider single chain network now. # For branch network, we counldn't use block.ops[i + 1] as # the judgment condition. next_op = self.block.ops[i + 1] # conv2d without bias if (next_op.type == 'batch_norm'): # insert bias op bias_op = self._insert_bias_op(i + 1, current_op, next_op) # fuse batch_norm self._fuse_param(current_op, next_op, bias_op, 0) # remove batch_norm_op self.block._remove_op(i + 2) i = i + 1 # conv2d with bias, the next_op.type is elementwise_add elif (next_op.type == 'elementwise_add'): next_next_op = self.block.ops[i + 2] if (next_next_op.type == 'batch_norm'): # fuse batch_norm self._fuse_param(current_op, next_next_op, next_op, 1) # remove batch_norm_op self.block._remove_op(i + 2) i = i + 1 i = i + 1 self._adjust_input() self._remove_unused_var() # TODO(luotao): use clone() method to flush the program.desc in force, # since some large program.desc will not be flushed immediately. # And a better solution will be considered later. program = program.clone() # ====================== private transpiler functions ===================== def _insert_bias_op(self, index, current_op, bn_op): ''' Construct elementwise_add operator for adding bias and insert it into program. :param index: insert location of bias_op :type index: Int :param current_op: current operator (conv or fc) :type current_op: Operator :param bn_op: batch norm operator :type bn_op: Operator :return: bias_op :rtype: Operator ''' # The input of bias_op is current_op's output and Bias of bn_op # The output of bias_op is bn_op's output x_var = self.block.var(current_op.output("Output")[0]) y_var = self.block.var(bn_op.input("Bias")[0]) out_var = self.block.var(bn_op.output("Y")[0]) bias_op = self.block._insert_op( index, type="elementwise_add", inputs={"X": x_var, "Y": y_var}, outputs={"Out": out_var}, attrs={"axis": 1}) # dim_start=1 return bias_op def _fuse_param(self, current_op, bn_op, bias_op, with_bias): ''' fuse the batch_norm_op' parameters to current_op (conv or fc) :param current_op: current operator (conv or fc) :type current_op: Operator :param bn_op: batch norm operator :type bn_op: Operator :param bias_op: elementwise_add operator for adding bias :type bias_op: Operator :param with_bias: If current operator has bias, with_bias = 1; otherwise 0. :type with_bias: Int ''' def _update_param(op, old_param_name, new_param): # For the sake of remaining the original variables the same as before, # create new variables in scope to store the new parameters. old_param_name = old_param_name[0] old_var = self.block.vars[old_param_name] new_param_name = old_param_name + '_fuse_bn' new_var = self.block.create_parameter( name=new_param_name.encode('ascii'), type=old_var.type, dtype=old_var.dtype, shape=old_var.shape) op.rename_input(old_param_name, new_param_name) self.scope.var(new_param_name) tensor = self.scope.find_var(new_param_name).get_tensor() tensor.set(np.array(new_param), self.place) def _load_param(param_name): return np.array(self.scope.find_var(param_name[0]).get_tensor()) bias_bn = _load_param(bn_op.input("Bias")) #Bias scale_bn = _load_param(bn_op.input("Scale")) #Scale mean_bn = _load_param(bn_op.input("Mean")) #Mean var_bn = _load_param(bn_op.input("Variance")) #Variance # TODO(luotao1): consider only conv2d now. fc would be delt later. current_param = _load_param(current_op.input("Filter")) std_bn = np.float32(np.sqrt(np.add(var_bn, 1e-5))) tmp = np.float32(np.divide(scale_bn, std_bn)) # add bias of batch_norm_op to conv2d if with_bias: bias = _load_param(bias_op.input("Y")) else: bias = np.zeros(bias_bn.shape) bias = np.float32( np.add(np.multiply(np.subtract(bias, mean_bn), tmp), bias_bn)) # re-compute weight of conv2d tmp = tmp.reshape(tmp.shape[0], -1) dst_param = current_param.reshape((tmp.shape[0], -1)) dst_param = np.float32(np.multiply(dst_param, tmp)) dst_param = dst_param.reshape(current_param.shape) # update parameters _update_param(current_op, current_op.input("Filter"), dst_param) _update_param(bias_op, bias_op.input("Y"), bias) # collect the renamed input self.input_map[bn_op.output("Y")[0]] = bias_op.output("Out")[0] def _adjust_input(self): for i in range(len(self.block.ops)): current_op = self.block.ops[i] for input_arg in current_op.input_arg_names: if input_arg in self.input_map: current_op.rename_input(input_arg, self.input_map[input_arg]) def _remove_unused_var(self): ''' remove unused varibles in program ''' args = [] for i in range(len(self.block.ops)): current_op = self.block.ops[i] args += current_op.input_arg_names args += current_op.output_arg_names args = list(set(args)) # unique the input and output arguments for var in list(self.block.vars.keys()): if var not in args: self.block._remove_var(var)