# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np import math from op_test import OpTest class TestSequenceReshape(OpTest): def setUp(self): self.op_type = 'sequence_reshape' dimension = 12 x_lod = [[4, 1, 3, 3]] x = np.random.uniform(0.1, 1, [11, 24]).astype('float32') self.inputs = {'X': (x, x_lod)} self.attrs = {'new_dim': dimension} out, out_lod = self.compute_output(x, x_lod, dimension) self.outputs = {'Out': (out, out_lod)} def compute_output(self, x, x_lod, dimension): x_width = x.shape[1] out_lod = [[]] for i in range(len(x_lod[0])): seq_len = x_lod[0][i] offset = (seq_len * x_width) / dimension assert int(offset) * dimension == seq_len * x_width out_lod[0].append(int(offset)) out = np.zeros(shape=(sum(out_lod[0]), dimension)).astype('float32') out.ravel()[:] = x.ravel()[:] return out, out_lod def test_check_output(self): self.check_output() def test_check_grad(self): self.check_grad(["X"], "Out") class TestSequenceReshape_reduce(TestSequenceReshape): def setUp(self): self.op_type = 'sequence_reshape' dimension = 24 x_lod = [[4, 2, 2, 4]] x = np.random.uniform(0.1, 1, [12, 12]).astype('float32') self.inputs = {'X': (x, x_lod)} self.attrs = {'new_dim': dimension} out, out_lod = self.compute_output(x, x_lod, dimension) self.outputs = {'Out': (out, out_lod)} class TestSequenceReshape_same(TestSequenceReshape): def setUp(self): self.op_type = 'sequence_reshape' dimension = 12 x_lod = [[4, 2, 2, 4]] x = np.random.uniform(0.1, 1, [12, 12]).astype('float32') self.inputs = {'X': (x, x_lod)} self.attrs = {'new_dim': dimension} out, out_lod = self.compute_output(x, x_lod, dimension) self.outputs = {'Out': (out, out_lod)} if __name__ == '__main__': unittest.main()