# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np import paddle.fluid.core as core import paddle.fluid as fluid class TestElementWiseAddOp(unittest.TestCase): def __assert_close(self, tensor, np_array, msg, atol=1e-4): self.assertTrue(np.allclose(np.array(tensor), np_array, atol=atol), msg) def check_forward_backward(self): def test_with_place(place): out_grad = np.random.random_sample(self.x.shape).astype(np.float32) x_grad = out_grad sum_axis = list(range(0, len(self.x.shape))) del sum_axis[self.axis] y_grad = np.sum(out_grad, axis=tuple(sum_axis)) var_dict = locals() var_dict['y'] = self.y var_dict['x'] = self.x var_dict['out'] = self.out var_dict['y@GRAD'] = y_grad var_dict['x@GRAD'] = x_grad var_dict['out@GRAD'] = out_grad var_names = ['x', 'y', 'out', 'y@GRAD', 'x@GRAD', 'out@GRAD'] ground_truth = {name: var_dict[name] for name in var_names} program = fluid.Program() with fluid.program_guard(program): block = program.global_block() for name in ground_truth: block.create_var( name=name, dtype='float32', shape=ground_truth[name].shape) elementwise_add_op = block.append_op( type="elementwise_add", inputs={ "X": block.var('x'), "Y": block.var('y'), }, outputs={"Out": block.var('out'), }, attrs={"axis": self.axis, }) # generate backward op_desc grad_op_desc_list, op_grad_to_var = core.get_grad_op_desc( elementwise_add_op.desc, set(), []) grad_op_desc = grad_op_desc_list[0] new_op_desc = block.desc.append_op() new_op_desc.copy_from(grad_op_desc) for var_name in grad_op_desc.output_arg_names(): block.desc.var(var_name.encode("ascii")) grad_op_desc.infer_var_type(block.desc) grad_op_desc.infer_shape(block.desc) for arg in grad_op_desc.output_arg_names(): grad_var = block.desc.find_var(arg.encode("ascii")) grad_var.set_dtype(core.VarDesc.VarType.FP32) exe = fluid.Executor(place) out = exe.run(program, feed={ name: var_dict[name] for name in ['x', 'y', 'out@GRAD'] }, fetch_list=['x@GRAD', 'y@GRAD']) self.__assert_close(x_grad, out[0], "x@GRAD") self.__assert_close(y_grad, out[1], "y@GRAD", atol=1.4) places = [core.CPUPlace()] if core.is_compiled_with_cuda() and core.op_support_gpu( "elementwise_add"): places.append(core.CUDAPlace(0)) for place in places: test_with_place(place) def test_check_forward_backward_with_scale_and_bias(self): np.random.seed(123) self.x = np.random.random((4, 32, 220, 220)).astype(np.float32) self.y = np.random.random((32)).astype(np.float32) self.out = self.x + self.y.reshape(1, 32, 1, 1) self.axis = 1 self.check_forward_backward() if __name__ == '__main__': unittest.main()