# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np from functools import partial from numpy import asarray from numpy.fft._pocketfft import _raw_fft, _raw_fftnd, _get_forward_norm, _get_backward_norm, _cook_nd_args def _fftc2c(a, n=None, axis=-1, norm=None, forward=None): a = asarray(a) if n is None: n = a.shape[axis] if forward: inv_norm = _get_forward_norm(n, norm) else: inv_norm = _get_backward_norm(n, norm) output = _raw_fft(a, n, axis, False, forward, inv_norm) return output def _fftr2c(a, n=None, axis=-1, norm=None, forward=None): a = asarray(a) if n is None: n = a.shape[axis] if forward: inv_norm = _get_forward_norm(n, norm) else: inv_norm = _get_backward_norm(n, norm) output = _raw_fft(a, n, axis, True, True, inv_norm) if not forward: output = output.conj() return output def _fftc2r(a, n=None, axis=-1, norm=None, forward=None): a = asarray(a) if n is None: n = (a.shape[axis] - 1) * 2 if forward: inv_norm = _get_forward_norm(n, norm) else: inv_norm = _get_backward_norm(n, norm) output = _raw_fft(a.conj() if forward else a, n, axis, True, False, inv_norm) return output def fft_c2c(x, axes, normalization, forward): f = partial(_fftc2c, forward=forward) y = _raw_fftnd(x, s=None, axes=axes, function=f, norm=normalization) return y def fft_c2c_backward(dy, axes, normalization, forward): f = partial(_fftc2c, forward=forward) dx = _raw_fftnd(dy, s=None, axes=axes, function=f, norm=normalization) return dx def fft_r2c(x, axes, normalization, forward, onesided): a = asarray(x) s, axes = _cook_nd_args(a, axes=axes) if onesided: a = _fftr2c(a, s[-1], axes[-1], normalization, forward) for ii in range(len(axes) - 1): a = _fftc2c(a, s[ii], axes[ii], normalization, forward) else: a = fft_c2c(x, axes, normalization, forward) return a def fft_r2c_backward(dy, x, axes, normalization, forward, onesided): a = dy if not onesided: a = fft_c2c_backward(a, axes, normalization, forward).real else: pad_widths = [(0, 0)] * a.ndim last_axis = axes[-1] if last_axis < 0: last_axis += a.ndim last_dim_size = a.shape[last_axis] pad_widths[last_axis] = (0, x.shape[last_axis] - last_dim_size) a = np.pad(a, pad_width=pad_widths) a = fft_c2c_backward(a, axes, normalization, forward).real return a def fft_c2r(x, axes, normalization, forward, last_dim_size): a = asarray(x) s, axes = _cook_nd_args(a, axes=axes, invreal=1) if last_dim_size is not None: s[-1] = last_dim_size for ii in range(len(axes) - 1): a = _fftc2c(a, s[ii], axes[ii], normalization, forward) a = _fftc2r(a, s[-1], axes[-1], normalization, forward) return a