/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include "paddle/fluid/framework/op_registry.h" #include "paddle/fluid/framework/operator.h" #include "paddle/fluid/framework/raw_tensor.h" #include "paddle/phi/core/kernel_registry.h" #include "paddle/phi/core/tensor_utils.h" namespace paddle { namespace framework { class OpDesc; class Scope; template class EmptyGradOpMaker; } // namespace framework namespace imperative { class OpBase; } // namespace imperative } // namespace paddle namespace paddle { namespace operators { const framework::FeedType& CheckAndGetFeedItem(const phi::ExtendedTensor& x, int col) { PADDLE_ENFORCE_GE(col, 0, platform::errors::InvalidArgument( "Expected the column index (the attribute 'col' of " "operator 'Feed') of current feeding variable to be " "no less than 0. But received column index = %d.", col)); auto feed_list = static_cast(&x); PADDLE_ENFORCE_LT( static_cast(col), feed_list->size(), platform::errors::InvalidArgument( "The column index of current feeding variable is expected to be " "less than the length of feeding list. But received column index = " "%d, the length of feeding list = %d", col, feed_list->size())); return feed_list->at(static_cast(col)); } template void FeedDenseTensorKernel(const Context& dev_ctx, const phi::ExtendedTensor& x, int col, phi::DenseTensor* out) { PADDLE_ENFORCE_NOT_NULL( out, platform::errors::NotFound( "Output cannot be found in scope for operator 'Feed'")); const auto& feed_item = CheckAndGetFeedItem(x, col); const auto& in_tensor = paddle::get(feed_item); const auto& place = dev_ctx.GetPlace(); if (platform::is_same_place(in_tensor.place(), place)) { out->ShareDataWith(in_tensor); } else { framework::TensorCopy(in_tensor, place, dev_ctx, out); } out->set_lod(in_tensor.lod()); } template void FeedSparseCooTensorKernel(const Context& dev_ctx, const phi::ExtendedTensor& x, int col, phi::SparseCooTensor* out) { PADDLE_ENFORCE_NOT_NULL( out, platform::errors::NotFound( "Output cannot be found in scope for operator 'Feed'")); const auto& feed_item = CheckAndGetFeedItem(x, col); const auto& in_tensor = paddle::get(feed_item); const auto& place = dev_ctx.GetPlace(); if (platform::is_same_place(in_tensor.place(), place)) { *out = in_tensor; } else { phi::DenseTensor indices, values; framework::TensorCopy(in_tensor.indices(), place, dev_ctx, &indices); framework::TensorCopy(in_tensor.values(), place, dev_ctx, &values); out->SetMember(indices, values, in_tensor.meta()); } } template void FeedStringsKernel(const Context& dev_ctx UNUSED, const phi::ExtendedTensor& x, int col, phi::ExtendedTensor* out) { PADDLE_ENFORCE_NOT_NULL( out, platform::errors::NotFound( "Output cannot be found in scope for operator 'Feed'")); const auto& feed_item = CheckAndGetFeedItem(x, col); auto strs_out = static_cast(out); const auto& in_str = paddle::get(feed_item); strs_out->resize(in_str.size()); *strs_out = in_str; } class FeedOp : public framework::OperatorWithKernel { using framework::OperatorWithKernel::OperatorWithKernel; void InferShape(framework::InferShapeContext* ctx) const override { OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "feed"); OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "feed"); if (ctx->IsRuntime()) { framework::Variable* x_var = PADDLE_GET(framework::Variable*, ctx->GetInputVarPtrs("X")[0]); framework::Variable* out_var = PADDLE_GET(framework::Variable*, ctx->GetOutputVarPtrs("Out")[0]); auto& x = x_var->Get(); int col = ctx->Attrs().Get("col"); const auto& feed_item = CheckAndGetFeedItem(x, col); if (feed_item.index() == 0) { // DenseTensor auto& feed_tensor = PADDLE_GET_CONST(phi::DenseTensor, feed_item); phi::DenseTensor* out_tensor = out_var->GetMutable(); phi::DenseTensorMeta meta = out_tensor->meta(); meta.dims = feed_tensor.dims(); meta.dtype = feed_tensor.dtype(); meta.layout = feed_tensor.layout(); meta.lod = feed_tensor.lod(); out_tensor->set_meta(meta); } else if (feed_item.index() == 1) { // Strings auto& feed_str = PADDLE_GET_CONST(framework::Strings, feed_item); out_var->GetMutable()->resize(feed_str.size()); } else if (feed_item.index() == 2) { // SparseCooTensor auto& feed_sparse_tensor = PADDLE_GET_CONST(phi::SparseCooTensor, feed_item); out_var->GetMutable()->set_meta( feed_sparse_tensor.meta()); out_var->GetMutable()->SetCoalesced( feed_sparse_tensor.coalesced()); out_var->GetMutable()->SetIndicesDict( feed_sparse_tensor.GetIndicesDict()); } else { PADDLE_THROW( phi::errors::Unimplemented("Only support DenseTnesor, Strings, and " "SparseCooTensor for feed op now.")); } } } protected: phi::KernelKey GetExpectedKernelType( const framework::ExecutionContext& ctx) const override { const framework::Variable* x_var = ctx.InputVar("X"); auto& x = x_var->Get(); int col = ctx.Attr("col"); auto& feed_item = x[col]; framework::proto::VarType::Type expected_data_type; if (feed_item.index() == 0) { // DenseTensor expected_data_type = framework::TransToProtoVarType( PADDLE_GET_CONST(phi::DenseTensor, feed_item).dtype()); } else if (feed_item.index() == 2) { // SparseCooTensor expected_data_type = framework::TransToProtoVarType( PADDLE_GET_CONST(phi::SparseCooTensor, feed_item).dtype()); } else { // Strings expected_data_type = framework::proto::VarType::FP32; } return phi::KernelKey(expected_data_type, ctx.GetPlace()); } }; class FeedOpInfoMaker : public framework::OpProtoAndCheckerMaker { public: void Make() override { AddInput("X", "(vector) " "A feeding list of phi::DenseTensor, which may have " "different dimension and data type."); AddOutput("Out", "(phi::DenseTensor) The phi::DenseTensor which is a copy " "of the col-th feeding " "object."); AddAttr("col", "(int) The column index of current feeding object."); AddComment(R"DOC( Feed Operator. It should not be configured by users directly. )DOC"); } }; } // namespace operators } // namespace paddle // TODO(YuanRisheng): Maybe we need design a new registry macro for // registering device independent kernels. REGISTER_OPERATOR( feed, paddle::operators::FeedOp, paddle::framework::EmptyGradOpMaker, paddle::framework::EmptyGradOpMaker, paddle::operators::FeedOpInfoMaker); PD_REGISTER_KERNEL_FOR_ALL_DTYPE( feed_sparse_coo_tensor, CPU, ALL_LAYOUT, paddle::operators::FeedSparseCooTensorKernel) {} #if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP) PD_REGISTER_KERNEL_FOR_ALL_DTYPE( feed_sparse_coo_tensor, GPU, ALL_LAYOUT, paddle::operators::FeedSparseCooTensorKernel) {} #elif defined(PADDLE_WITH_XPU) PD_REGISTER_KERNEL_FOR_ALL_DTYPE( feed_sparse_coo_tensor, XPU, ALL_LAYOUT, paddle::operators::FeedSparseCooTensorKernel) {} #endif PD_REGISTER_KERNEL_FOR_ALL_BACKEND_DTYPE( feed_dense_tensor, ALL_LAYOUT, paddle::operators::FeedDenseTensorKernel) {} PD_REGISTER_KERNEL_FOR_ALL_BACKEND_DTYPE(feed_strings, ALL_LAYOUT, paddle::operators::FeedStringsKernel) { }