# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from collections import OrderedDict from collections.abc import Iterable, Mapping from ...fluid.dygraph.base import param_guard from ...fluid.framework import Parameter from .layers import Layer __all__ = [] class LayerDict(Layer): """ LayerDict holds sublayers in the ordered dictionary, and sublayers it contains are properly registered. Holded sublayers can be accessed like a regular ordered python dictionary. Parameters: sublayers (LayerDict|OrderedDict|list[(key,Layer)...], optional): iterable of key/value pairs, the type of value is 'paddle.nn.Layer' . Examples: .. code-block:: python import paddle import numpy as np from collections import OrderedDict sublayers = OrderedDict([ ('conv1d', paddle.nn.Conv1D(3, 2, 3)), ('conv2d', paddle.nn.Conv2D(3, 2, 3)), ('conv3d', paddle.nn.Conv3D(4, 6, (3, 3, 3))), ]) layers_dict = paddle.nn.LayerDict(sublayers=sublayers) l = layers_dict['conv1d'] for k in layers_dict: l = layers_dict[k] len(layers_dict) #3 del layers_dict['conv2d'] len(layers_dict) #2 conv1d = layers_dict.pop('conv1d') len(layers_dict) #1 layers_dict.clear() len(layers_dict) #0 """ def __init__(self, sublayers=None): super().__init__() if sublayers is not None: self.update(sublayers) def __getitem__(self, key): return self._sub_layers[key] def __setitem__(self, key, sublayer): return self.add_sublayer(key, sublayer) def __delitem__(self, key): del self._sub_layers[key] def __len__(self): return len(self._sub_layers) def __iter__(self): return iter(self._sub_layers) def __contains__(self, key): return key in self._sub_layers def clear(self): """ Clear all the sublayers in the LayerDict. Parameters: None. Examples: .. code-block:: python import paddle from collections import OrderedDict sublayers = OrderedDict([ ('conv1d', paddle.nn.Conv1D(3, 2, 3)), ('conv2d', paddle.nn.Conv2D(3, 2, 3)), ('conv3d', paddle.nn.Conv3D(4, 6, (3, 3, 3))), ]) layer_dict = paddle.nn.LayerDict(sublayers=sublayers) len(layer_dict) #3 layer_dict.clear() len(layer_dict) #0 """ self._sub_layers.clear() def pop(self, key): """ Remove the key from the LayerDict and return the layer of the key. Parameters: key (str): the key to be removed. Examples: .. code-block:: python import paddle from collections import OrderedDict sublayers = OrderedDict([ ('conv1d', paddle.nn.Conv1D(3, 2, 3)), ('conv2d', paddle.nn.Conv2D(3, 2, 3)), ('conv3d', paddle.nn.Conv3D(4, 6, (3, 3, 3))), ]) layer_dict = paddle.nn.LayerDict(sublayers=sublayers) len(layer_dict) #3 layer_dict.pop('conv2d') len(layer_dict) #2 """ v = self[key] del self[key] return v def keys(self): """ Return the iterable of the keys in LayerDict. Parameters: None. Examples: .. code-block:: python import paddle from collections import OrderedDict sublayers = OrderedDict([ ('conv1d', paddle.nn.Conv1D(3, 2, 3)), ('conv2d', paddle.nn.Conv2D(3, 2, 3)), ('conv3d', paddle.nn.Conv3D(4, 6, (3, 3, 3))), ]) layer_dict = paddle.nn.LayerDict(sublayers=sublayers) for k in layer_dict.keys(): print(k) #conv1d #conv2d #conv3d """ return self._sub_layers.keys() def items(self): """ Return the iterable of the key/value pairs in LayerDict. Parameters: None. Examples: .. code-block:: python import paddle from collections import OrderedDict sublayers = OrderedDict([ ('conv1d', paddle.nn.Conv1D(3, 2, 3)), ('conv2d', paddle.nn.Conv2D(3, 2, 3)), ('conv3d', paddle.nn.Conv3D(4, 6, (3, 3, 3))), ]) layer_dict = paddle.nn.LayerDict(sublayers=sublayers) for k, v in layer_dict.items(): print(k, ":", v) #conv1d : Conv1D(3, 2, kernel_size=[3], data_format=NCL) #conv2d : Conv2D(3, 2, kernel_size=[3, 3], data_format=NCHW) #conv3d : Conv3D(4, 6, kernel_size=[3, 3, 3], data_format=NCDHW) """ return self._sub_layers.items() def values(self): """ Return the iterable of the values in LayerDict. Parameters: None. Examples: .. code-block:: python import paddle from collections import OrderedDict sublayers = OrderedDict([ ('conv1d', paddle.nn.Conv1D(3, 2, 3)), ('conv2d', paddle.nn.Conv2D(3, 2, 3)), ('conv3d', paddle.nn.Conv3D(4, 6, (3, 3, 3))), ]) layer_dict = paddle.nn.LayerDict(sublayers=sublayers) for v in layer_dict.values(): print(v) #Conv1D(3, 2, kernel_size=[3], data_format=NCL) #Conv2D(3, 2, kernel_size=[3, 3], data_format=NCHW) #Conv3D(4, 6, kernel_size=[3, 3, 3], data_format=NCDHW) """ return self._sub_layers.values() def update(self, sublayers): """ Update the key/values pairs in sublayers to the LayerDict, overwriting the existing keys. Parameters: sublayers (LayerDict|OrderedDict|list[(key,Layer)...]): iterable of key/value pairs, the type of value is 'paddle.nn.Layer' . Examples: .. code-block:: python import paddle from collections import OrderedDict sublayers = OrderedDict([ ('conv1d', paddle.nn.Conv1D(3, 2, 3)), ('conv2d', paddle.nn.Conv2D(3, 2, 3)), ('conv3d', paddle.nn.Conv3D(4, 6, (3, 3, 3))), ]) new_sublayers = OrderedDict([ ('relu', paddle.nn.ReLU()), ('conv2d', paddle.nn.Conv2D(4, 2, 4)), ]) layer_dict = paddle.nn.LayerDict(sublayers=sublayers) layer_dict.update(new_sublayers) for k, v in layer_dict.items(): print(k, ":", v) #conv1d : Conv1D(3, 2, kernel_size=[3], data_format=NCL) #conv2d : Conv2D(4, 2, kernel_size=[4, 4], data_format=NCHW) #conv3d : Conv3D(4, 6, kernel_size=[3, 3, 3], data_format=NCDHW) #relu : ReLU() """ assert isinstance(sublayers, Iterable), ( "The type of sublayers is not iterable of key/value pairs, the type of sublayers is " + type(sublayers).__name__ ) if isinstance(sublayers, (OrderedDict, LayerDict, Mapping)): for key, layer in sublayers.items(): self.add_sublayer(key, layer) else: # handle this format [(key1, layer1), (key2, layer2)...] for i, kv in enumerate(sublayers): if len(kv) != 2: raise ValueError( "The length of the " + str(i) + "'s element in sublayers is " + str(len(kv)) + ", which must be 2." ) self.add_sublayer(kv[0], kv[1]) class ParameterList(Layer): """ParameterList Container. This container acts like a Python list, but parameters it contains will be properly added. Parameters: parameters (iterable, optional): Iterable Parameters to be added Examples: .. code-block:: python import paddle class MyLayer(paddle.nn.Layer): def __init__(self, num_stacked_param): super().__init__() # create ParameterList with iterable Parameters self.params = paddle.nn.ParameterList( [paddle.create_parameter( shape=[2, 2], dtype='float32')] * num_stacked_param) def forward(self, x): for i, p in enumerate(self.params): tmp = self._helper.create_variable_for_type_inference('float32') self._helper.append_op( type="mul", inputs={"X": x, "Y": p}, outputs={"Out": tmp}, attrs={"x_num_col_dims": 1, "y_num_col_dims": 1}) x = tmp return x x = paddle.uniform(shape=[5, 2], dtype='float32') num_stacked_param = 4 model = MyLayer(num_stacked_param) print(len(model.params)) # 4 res = model(x) print(res.shape) # [5, 2] replaced_param = paddle.create_parameter(shape=[2, 3], dtype='float32') model.params[num_stacked_param - 1] = replaced_param # replace last param res = model(x) print(res.shape) # [5, 3] model.params.append(paddle.create_parameter(shape=[3, 4], dtype='float32')) # append param print(len(model.params)) # 5 res = model(x) print(res.shape) # [5, 4] """ def __init__(self, parameters=None): super().__init__() if parameters is not None: for idx, param in enumerate(parameters): assert isinstance(param, Parameter) self.add_parameter(str(idx), param) def __getitem__(self, idx): with param_guard(self._parameters): return self._parameters[str(idx)] def __setitem__(self, idx, param): assert isinstance(param, Parameter) setattr(self, str(idx), param) def __len__(self): return len(self._parameters) def __iter__(self): with param_guard(self._parameters): return iter(self._parameters.values()) def append(self, parameter): """Appends a given parameter at the end of the list. Parameters: parameter (Parameter): parameter to append """ idx = len(self._parameters) self.add_parameter(str(idx), parameter) return self class LayerList(Layer): """ LayerList holds sublayers, and sublayers it contains are properly registered. Holded sublayers can be indexed like a regular python list. Parameters: sublayers (iterable of Layer, optional): sublayers to hold Examples: .. code-block:: python import paddle class MyLayer(paddle.nn.Layer): def __init__(self): super().__init__() self.linears = paddle.nn.LayerList( [paddle.nn.Linear(10, 10) for i in range(10)]) def forward(self, x): # LayerList can act as an iterable, or be indexed using ints for i, l in enumerate(self.linears): x = self.linears[i // 2](x) + l(x) return x """ def __init__(self, sublayers=None): super().__init__() if sublayers is not None: for idx, layer in enumerate(sublayers): self.add_sublayer(str(idx), layer) def _get_abs_idx(self, idx): if isinstance(idx, int): if not (-len(self) <= idx < len(self)): raise IndexError( 'index {} is out of range, should be an integer in range [{}, {})'.format( idx, -len(self), len(self) ) ) if idx < 0: idx += len(self) return idx def __getitem__(self, idx): if isinstance(idx, slice): return self.__class__(list(self._sub_layers.values())[idx]) else: idx = self._get_abs_idx(idx) return self._sub_layers[str(idx)] def __setitem__(self, idx, sublayer): idx = self._get_abs_idx(idx) return setattr(self, str(idx), sublayer) def __delitem__(self, idx): if isinstance(idx, slice): for k in range(len(self._sub_layers))[idx]: delattr(self, str(k)) else: idx = self._get_abs_idx(idx) delattr(self, str(idx)) str_indices = [str(i) for i in range(len(self._sub_layers))] self._sub_layers = OrderedDict( list(zip(str_indices, self._sub_layers.values())) ) def __len__(self): return len(self._sub_layers) def __iter__(self): return iter(self._sub_layers.values()) def append(self, sublayer): """ Appends a sublayer to the end of the list. Parameters: sublayer (Layer): sublayer to append Examples: .. code-block:: python import paddle linears = paddle.nn.LayerList([paddle.nn.Linear(10, 10) for i in range(10)]) another = paddle.nn.Linear(10, 10) linears.append(another) print(len(linears)) # 11 """ self.add_sublayer(str(len(self)), sublayer) return self def insert(self, index, sublayer): """ Insert a sublayer before a given index in the list. Parameters: index (int): index to insert. sublayer (Layer): sublayer to insert Examples: .. code-block:: python import paddle linears = paddle.nn.LayerList([paddle.nn.Linear(10, 10) for i in range(10)]) another = paddle.nn.Linear(10, 10) linears.insert(3, another) print(linears[3] is another) # True another = paddle.nn.Linear(10, 10) linears.insert(-1, another) print(linears[-2] is another) # True """ assert isinstance(index, int) and -len(self._sub_layers) <= index < len( self._sub_layers ), "index should be an integer in range [{}, {})".format( -len(self), len(self) ) index = self._get_abs_idx(index) for i in range(len(self._sub_layers), index, -1): self._sub_layers[str(i)] = self._sub_layers[str(i - 1)] self._sub_layers[str(index)] = sublayer def extend(self, sublayers): """ Appends sublayers to the end of the list. Parameters: sublayers (iterable of Layer): iterable of sublayers to append Examples: .. code-block:: python import paddle linears = paddle.nn.LayerList([paddle.nn.Linear(10, 10) for i in range(10)]) another_list = paddle.nn.LayerList([paddle.nn.Linear(10, 10) for i in range(5)]) linears.extend(another_list) print(len(linears)) # 15 print(another_list[0] is linears[10]) # True """ offset = len(self) for i, sublayer in enumerate(sublayers): idx = str(offset + i) self.add_sublayer(idx, sublayer) return self class Sequential(Layer): """Sequential container. Sub layers will be added to this container in the order of argument in the constructor. The argument passed to the constructor can be iterable Layers or iterable name Layer pairs. Parameters: layers(Layer|list|tuple): Layer or list/tuple of iterable name Layer pair. Examples: .. code-block:: python import paddle data = paddle.uniform(shape=[30, 10], dtype='float32') # create Sequential with iterable Layers model1 = paddle.nn.Sequential( paddle.nn.Linear(10, 1), paddle.nn.Linear(1, 2) ) model1[0] # access the first layer res1 = model1(data) # sequential execution # create Sequential with name Layer pairs model2 = paddle.nn.Sequential( ('l1', paddle.nn.Linear(10, 2)), ('l2', paddle.nn.Linear(2, 3)) ) model2['l1'] # access l1 layer model2.add_sublayer('l3', paddle.nn.Linear(3, 3)) # add sublayer res2 = model2(data) # sequential execution """ def __init__(self, *layers): super().__init__() if len(layers) > 0 and isinstance(layers[0], (list, tuple)): for name, layer in layers: self.add_sublayer(name, layer) else: for idx, layer in enumerate(layers): self.add_sublayer(str(idx), layer) def __getitem__(self, name): if isinstance(name, slice): return self.__class__(*(list(self._sub_layers.values())[name])) elif isinstance(name, str): return self._sub_layers[name] else: if name >= len(self._sub_layers): raise IndexError(f'index {name} is out of range') elif name < 0 and name >= -len(self._sub_layers): name += len(self._sub_layers) elif name < -len(self._sub_layers): raise IndexError(f'index {name} is out of range') return list(self._sub_layers.values())[name] def __setitem__(self, name, layer): assert isinstance(layer, Layer) setattr(self, str(name), layer) def __delitem__(self, name): name = str(name) assert name in self._sub_layers del self._sub_layers[name] def __len__(self): return len(self._sub_layers) def forward(self, input): for layer in self._sub_layers.values(): input = layer(input) return input