# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import paddle from paddle import ir from paddle.fluid.core import call_vjp, has_vjp paddle.enable_static() def get_ir_program(): main_program, start_program = ( paddle.static.Program(), paddle.static.Program(), ) with paddle.static.program_guard(main_program, start_program): x = paddle.static.data('x', [4, 4], 'float32') x.stop_gradient = False paddle.tanh(x) paddle.tensor.fill_constant(shape=[4, 4], dtype='float32', value=2.0) newir_program = ir.translate_to_new_ir(main_program.desc) return newir_program class TestTanhVjp(unittest.TestCase): def test_tanh_vjp1(self): newir_program = get_ir_program() tanh_op = newir_program.block().ops[-2] fill_constant_op = newir_program.block().ops[-1] out_grads = [[fill_constant_op.result(0)]] stop_gradients = [[False]] with paddle.ir.core.program_guard(newir_program): grad_outs = call_vjp(tanh_op, out_grads, stop_gradients) self.assertEqual( grad_outs[0][0].get_defining_op().name(), "pd.tanh_grad" ) self.assertEqual( grad_outs[0][0] .get_defining_op() .operands()[0] .source() .get_defining_op() .name(), "pd.tanh", ) self.assertEqual( grad_outs[0][0] .get_defining_op() .operands()[1] .source() .get_defining_op() .name(), "pd.full", ) self.assertEqual(len(newir_program.block().ops), 4) def test_tanh_vjp2(self): newir_program = get_ir_program() tanh_op = newir_program.block().ops[-2] fill_constant_op = newir_program.block().ops[-1] out_grads = [[fill_constant_op.result(0)]] stop_gradients = [[True]] with paddle.ir.core.program_guard(newir_program): grad_outs = call_vjp(tanh_op, out_grads, stop_gradients) self.assertEqual(grad_outs[0][0], None) class TestMeanVjp(unittest.TestCase): def test_mean_vjp1(self): main_program, start_program = ( paddle.static.Program(), paddle.static.Program(), ) with paddle.static.program_guard(main_program, start_program): x = paddle.static.data('x', [4, 4], 'float32') x.stop_gradient = False paddle.mean(x, axis=[0, 1]) paddle.tensor.fill_constant(shape=[1], dtype='float32', value=2.0) newir_program = ir.translate_to_new_ir(main_program.desc) fill_constant_op = newir_program.block().ops[-1] mean_op = newir_program.block().ops[-2] out_grads = [[fill_constant_op.result(0)]] stop_gradients = [[False]] with paddle.ir.core.program_guard(newir_program): grad_outs = call_vjp(mean_op, out_grads, stop_gradients) self.assertEqual( grad_outs[0][0].get_defining_op().name(), "pd.mean_grad" ) self.assertEqual( grad_outs[0][0] .get_defining_op() .operands()[0] .source() .get_defining_op() .name(), "pd.data", ) self.assertEqual( grad_outs[0][0] .get_defining_op() .operands()[1] .source() .get_defining_op() .name(), "pd.full", ) self.assertEqual(len(newir_program.block().ops), 4) def test_mean_vjp2(self): main_program, start_program = ( paddle.static.Program(), paddle.static.Program(), ) with paddle.static.program_guard(main_program, start_program): x = paddle.static.data('x', [4, 4], 'float32') x.stop_gradient = False paddle.mean(x, axis=[0, 1]) paddle.tensor.fill_constant(shape=[1], dtype='float32', value=2.0) newir_program = ir.translate_to_new_ir(main_program.desc) fill_constant_op = newir_program.block().ops[-1] mean_op = newir_program.block().ops[-2] out_grads = [[fill_constant_op.result(0)]] stop_gradients = [[True]] with paddle.ir.core.program_guard(newir_program): grad_outs = call_vjp(mean_op, out_grads, stop_gradients) self.assertEqual(grad_outs[0][0], None) class TesthasVjp(unittest.TestCase): def test_has_vjp(self): main_program, start_program = ( paddle.static.Program(), paddle.static.Program(), ) with paddle.static.program_guard(main_program, start_program): x = paddle.static.data('x', [4, 4], 'float32') x.stop_gradient = False paddle.mean(x, axis=[0, 1]) paddle.tensor.fill_constant(shape=[1], dtype='float32', value=2.0) newir_program = ir.translate_to_new_ir(main_program.desc) fill_constant_op = newir_program.block().ops[-1] mean_op = newir_program.block().ops[-2] self.assertEqual(has_vjp(fill_constant_op), False) self.assertEqual(has_vjp(mean_op), True) if __name__ == "__main__": unittest.main()