/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include "paddle/fluid/operators/matmul_v2_op.h" #include "paddle/fluid/operators/mlu/mlu_baseop.h" namespace paddle { namespace operators { template static void Mul(const framework::ExecutionContext& ctx, const phi::DenseTensor& X, const phi::DenseTensor& Y, phi::DenseTensor* Out) { Out->mutable_data(ctx.GetPlace()); MLUCnnlTensorDesc x_desc(X, CNNL_LAYOUT_ARRAY, ToCnnlDataType()); MLUCnnlTensorDesc y_desc(Y, CNNL_LAYOUT_ARRAY, ToCnnlDataType()); MLUCnnlTensorDesc out_desc(*Out, CNNL_LAYOUT_ARRAY, ToCnnlDataType()); MLUCnnlOpTensorDesc mul_op_desc( CNNL_OP_TENSOR_MUL, ToCnnlDataType(), CNNL_NOT_PROPAGATE_NAN); MLUCnnl::OpTensor(ctx, mul_op_desc.get(), x_desc.get(), GetBasePtr(&X), y_desc.get(), GetBasePtr(&Y), out_desc.get(), GetBasePtr(Out), ToCnnlDataType()); } template static void MatMul2D(const framework::ExecutionContext& ctx, const phi::DenseTensor& X, const phi::DenseTensor& Y, phi::DenseTensor* Out, const bool trans_x, const bool trans_y) { Out->mutable_data(ctx.GetPlace()); MLUCnnlTensorDesc x_desc(X, CNNL_LAYOUT_ARRAY, ToCnnlDataType()); MLUCnnlTensorDesc y_desc(Y, CNNL_LAYOUT_ARRAY, ToCnnlDataType()); MLUCnnlTensorDesc out_desc(*Out, CNNL_LAYOUT_ARRAY, ToCnnlDataType()); MLUCnnl::Matmul(ctx, trans_x, trans_y, x_desc.get(), GetBasePtr(&X), y_desc.get(), GetBasePtr(&Y), out_desc.get(), GetBasePtr(Out)); } template static void MatMul2DwithReduceBatch(const framework::ExecutionContext& ctx, const phi::DenseTensor& X, const phi::DenseTensor& Y, phi::DenseTensor* Out, const bool trans_x, const bool trans_y) { if (!Out->initialized()) { Out->mutable_data(ctx.GetPlace()); } // reshape to 2D matmul std::vector x_dims = phi::vectorize(X.dims()); std::vector y_dims = phi::vectorize(Y.dims()); std::vector realx_dims( {static_cast(x_dims[0] * x_dims[1]), static_cast(x_dims[2])}); std::vector realy_dims( {static_cast(y_dims[0] * y_dims[1]), static_cast(y_dims[2])}); MLUCnnlTensorDesc x_desc(2, realx_dims.data(), ToCnnlDataType()); MLUCnnlTensorDesc y_desc(2, realy_dims.data(), ToCnnlDataType()); MLUCnnlTensorDesc out_desc(*Out, CNNL_LAYOUT_ARRAY, ToCnnlDataType()); MLUCnnl::Matmul(ctx, trans_x, trans_y, x_desc.get(), GetBasePtr(&X), y_desc.get(), GetBasePtr(&Y), out_desc.get(), GetBasePtr(Out)); } template static void MatMulND(const framework::ExecutionContext& ctx, const phi::DenseTensor& X, const phi::DenseTensor& Y, phi::DenseTensor* Out, const bool trans_x, const bool trans_y) { if (!Out->initialized()) { Out->mutable_data(ctx.GetPlace()); } MLUCnnlTensorDesc x_desc(X, CNNL_LAYOUT_ARRAY, ToCnnlDataType()); MLUCnnlTensorDesc y_desc(Y, CNNL_LAYOUT_ARRAY, ToCnnlDataType()); MLUCnnlTensorDesc out_desc(*Out, CNNL_LAYOUT_ARRAY, ToCnnlDataType()); MLUCnnl::BatchMatmul(ctx, trans_x, trans_y, x_desc.get(), GetBasePtr(&X), y_desc.get(), GetBasePtr(&Y), out_desc.get(), GetBasePtr(Out)); } template static void ReduceDims(const framework::ExecutionContext& ctx, const std::vector& dims, const std::vector& bcast_dims, const phi::DenseTensor& in, phi::DenseTensor* out) { std::vector axes; int64_t size = bcast_dims.size(); int64_t diff = bcast_dims.size() - dims.size(); for (int64_t i = 0; i < size; ++i) { if (i < diff) { axes.push_back(i); continue; } if (bcast_dims[i] > dims[i - diff]) { axes.push_back(i); } } out->mutable_data(ctx.GetPlace()); MLUCnnlTensorDesc in_desc(in, CNNL_LAYOUT_ARRAY, ToCnnlDataType()); MLUCnnlTensorDesc out_desc(*out, CNNL_LAYOUT_ARRAY, ToCnnlDataType()); std::vector reduce_dims(axes.begin(), axes.end()); MLUCnnlReduceDesc reduce_desc(reduce_dims, CNNL_REDUCE_ADD, ToCnnlDataType(), CNNL_NOT_PROPAGATE_NAN, CNNL_REDUCE_NO_INDICES, CNNL_32BIT_INDICES); MLUCnnl::Reduce(ctx, true /*need_workspace*/, reduce_desc.get(), nullptr, in_desc.get(), GetBasePtr(&in), 0 /*indices_size*/, nullptr, nullptr, out_desc.get(), GetBasePtr(out)); } template class MatMulV2MLUKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { auto* X = ctx.Input("X"); auto* Y = ctx.Input("Y"); auto* Out = ctx.Output("Out"); const bool trans_x = ctx.Attr("trans_x"); const bool trans_y = ctx.Attr("trans_y"); std::vector x_dims = phi::vectorize(X->dims()); std::vector y_dims = phi::vectorize(Y->dims()); std::vector out_dims = phi::vectorize(Out->dims()); int x_ndim = x_dims.size(); int y_ndim = y_dims.size(); // Case 1: [K] x [K] = [1] // Equal: [1, K] x [K, 1] = [1, 1] => [1] const bool all_one_dim = (x_ndim == 1 && y_ndim == 1); if (all_one_dim) { Out->Resize({1, 1}); } // Resize dim 1 to 2 phi::DenseTensor x_temp, y_temp; x_temp.ShareDataWith(*X); y_temp.ShareDataWith(*Y); if (x_ndim == 1) { x_dims.insert(x_dims.begin(), 1); x_temp.Resize(phi::make_ddim(x_dims)); x_ndim = 2; // matmul op of mlu needs `std::max(x->dim, y->dim) == out->dim` if (out_dims.size() < y_dims.size()) { std::vector temp_out_dims(out_dims.begin(), out_dims.end()); temp_out_dims.insert(temp_out_dims.end() - 1, 1); Out->Resize(phi::make_ddim(temp_out_dims)); } } if (y_ndim == 1) { y_dims.push_back(1); y_temp.Resize(phi::make_ddim(y_dims)); y_ndim = 2; // matmul op of mlu needs `std::max(x->dim, y->dim) == out->dim` if (out_dims.size() < x_dims.size()) { std::vector temp_out_dims(out_dims.begin(), out_dims.end()); temp_out_dims.push_back(1); Out->Resize(phi::make_ddim(temp_out_dims)); } } const int K = trans_x ? x_dims[x_ndim - 2] : x_dims[x_ndim - 1]; if (trans_y) { PADDLE_ENFORCE_EQ( y_dims[y_ndim - 1], K, platform::errors::InvalidArgument("Input(Y) has error dim." "Y'dims[%d] must be equal to %d" "But received Y'dims[%d] is %d", y_ndim - 1, K, y_ndim - 1, y_dims[y_ndim - 1])); } else { PADDLE_ENFORCE_EQ( y_dims[y_ndim - 2], K, platform::errors::InvalidArgument("Input(Y) has error dim." "Y'dims[%d] must be equal to %d" "But received Y'dims[%d] is %d", y_ndim - 2, K, y_ndim - 2, y_dims[y_ndim - 2])); } if (x_ndim == 2 && y_ndim == 2) { // Case 2: [M, K] x [K, N] = [M, N] MatMul2D(ctx, x_temp, y_temp, Out, trans_x, trans_y); } else { // Case 3: [B, M, K] x [K, N] = [B, M, N] // Case 4: [B, M, K] x [B, K, N] = [B, M, N] MatMulND(ctx, x_temp, y_temp, Out, trans_x, trans_y); } if (phi::vectorize(Out->dims()) != out_dims) { Out->Resize(phi::make_ddim(out_dims)); } } }; template class MatMulGradV2MLUKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { auto* X = ctx.Input("X"); auto* Y = ctx.Input("Y"); auto* dOut = ctx.Input(framework::GradVarName("Out")); auto* dX = ctx.Output(framework::GradVarName("X")); auto* dY = ctx.Output(framework::GradVarName("Y")); const bool trans_x = ctx.Attr("trans_x"); const bool trans_y = ctx.Attr("trans_y"); std::vector x_dims = phi::vectorize(X->dims()); std::vector y_dims = phi::vectorize(Y->dims()); std::vector out_dims = phi::vectorize(dOut->dims()); int x_ndim = x_dims.size(); int y_ndim = y_dims.size(); int out_ndim = out_dims.size(); // Case 1: [K] x [K] = [1] if (x_ndim == 1 && y_ndim == 1) { if (dX) { Mul(ctx, *dOut, *Y, dX); } if (dY) { Mul(ctx, *dOut, *X, dY); } return; } // Resize dim 1 to 2 phi::DenseTensor x_temp, y_temp, dout_temp; x_temp.ShareDataWith(*X); y_temp.ShareDataWith(*Y); dout_temp.ShareDataWith(*dOut); if (x_ndim == 1) { x_dims.insert(x_dims.begin(), 1); out_dims.insert(out_dims.end() - 1, 1); x_temp.Resize(phi::make_ddim(x_dims)); dout_temp.Resize(phi::make_ddim(out_dims)); x_ndim = 2; out_ndim += 1; } if (y_ndim == 1) { y_dims.push_back(1); out_dims.push_back(1); y_temp.Resize(phi::make_ddim(y_dims)); dout_temp.Resize(phi::make_ddim(out_dims)); y_ndim = 2; out_ndim += 1; } // Case 2: [M, K] x [K, N] = [M, N] if (out_ndim == 2) { if (dX) { dX->Resize(phi::make_ddim(x_dims)); if (trans_x) { MatMul2D(ctx, y_temp, dout_temp, dX, trans_y, true); } else { MatMul2D(ctx, dout_temp, y_temp, dX, false, !trans_y); } dX->Resize(X->dims()); } if (dY) { dY->Resize(phi::make_ddim(y_dims)); if (trans_y) { MatMul2D(ctx, dout_temp, x_temp, dY, true, trans_x); } else { MatMul2D(ctx, x_temp, dout_temp, dY, !trans_x, false); } dY->Resize(Y->dims()); } return; } // Case 3: [B, M, K] x [K, N] = [B, M, N] // Case 4: [B, M, K] x [B, K, N] = [B, M, N] std::vector x_bcast_dims(out_ndim, 1); std::vector y_bcast_dims(out_ndim, 1); std::copy(out_dims.begin(), out_dims.end() - 2, x_bcast_dims.begin()); std::copy(out_dims.begin(), out_dims.end() - 2, y_bcast_dims.begin()); std::copy(x_dims.end() - 2, x_dims.end(), x_bcast_dims.end() - 2); std::copy(y_dims.end() - 2, y_dims.end(), y_bcast_dims.end() - 2); if (dX) { phi::DenseTensor dx_temp(X->type()); if (x_dims != x_bcast_dims) { dx_temp.Resize(phi::make_ddim(x_bcast_dims)); } else { dX->mutable_data(ctx.GetPlace()); dx_temp.ShareDataWith(*dX); } if (trans_x) { MatMulND(ctx, y_temp, dout_temp, &dx_temp, trans_y, true); } else { MatMulND(ctx, dout_temp, y_temp, &dx_temp, false, !trans_y); } if (x_dims != x_bcast_dims) { ReduceDims(ctx, x_dims, x_bcast_dims, dx_temp, dX); } } if (dY) { // Case 3: [B, M, K] x [K, N] = [B, M, N] better performance // otherwise, tensor dy_temp in else branch might encounter // numel overflow due to cnnlTensorDescriptor limitation if (x_dims.size() == 3 && phi::vectorize(Y->dims()).size() == 2) { if (trans_y) { MatMul2DwithReduceBatch(ctx, dout_temp, x_temp, dY, true, trans_x); } else { MatMul2DwithReduceBatch( ctx, x_temp, dout_temp, dY, !trans_x, false); } } else { phi::DenseTensor dy_temp(Y->type()); if (y_dims != y_bcast_dims) { dy_temp.Resize(phi::make_ddim(y_bcast_dims)); } else { dY->mutable_data(ctx.GetPlace()); dy_temp.ShareDataWith(*dY); } if (trans_y) { MatMulND(ctx, dout_temp, x_temp, &dy_temp, true, trans_x); } else { MatMulND(ctx, x_temp, dout_temp, &dy_temp, !trans_x, false); } if (y_dims != y_bcast_dims) { ReduceDims(ctx, y_dims, y_bcast_dims, dy_temp, dY); } } } } }; } // namespace operators } // namespace paddle namespace ops = paddle::operators; namespace plat = paddle::platform; REGISTER_OP_MLU_KERNEL(matmul_v2, ops::MatMulV2MLUKernel, ops::MatMulV2MLUKernel); REGISTER_OP_MLU_KERNEL(matmul_v2_grad, ops::MatMulGradV2MLUKernel, ops::MatMulGradV2MLUKernel);