/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include "paddle/fluid/framework/op_registry.h" #include "paddle/fluid/operators/conv_transpose_op.h" #include "paddle/fluid/operators/mlu/mlu_baseop.h" #include "paddle/phi/kernels/cpu/conv_util.h" namespace paddle { namespace operators { using DataLayout = phi::DataLayout; template class Conv2DTransposeMLUKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { const phi::DenseTensor* input = ctx.Input("Input"); const phi::DenseTensor* filter = ctx.Input("Filter"); phi::DenseTensor* output = ctx.Output("Output"); output->mutable_data(ctx.GetPlace()); std::vector output_padding = ctx.Attr>("output_padding"); const std::vector strides = ctx.Attr>("strides"); std::vector paddings = ctx.Attr>("paddings"); std::vector dilations = ctx.Attr>("dilations"); const std::string data_format = ctx.Attr("data_format"); int groups = ctx.Attr("groups"); const std::string padding_algorithm = ctx.Attr("padding_algorithm"); // check dimension const bool channel_last = data_format == "NHWC"; auto in_dims = input->dims(); auto filter_dims = filter->dims(); auto in_dims_size = in_dims.size(); framework::DDim in_data_dims; framework::DDim filter_data_dims; if (channel_last) { in_data_dims = phi::slice_ddim(in_dims, 1, in_dims.size() - 1); } else { in_data_dims = phi::slice_ddim(in_dims, 2, in_dims.size()); } filter_data_dims = phi::slice_ddim(filter_dims, 2, in_dims.size()); std::vector ksize = phi::vectorize(filter_data_dims); phi::UpdatePaddingAndDilation( &paddings, &dilations, padding_algorithm, in_data_dims, strides, ksize); phi::DenseTensor input_tensor(input->type()); phi::DenseTensor output_tensor(output->type()); input_tensor.set_layout(DataLayout::kNHWC); output_tensor.set_layout(DataLayout::kNHWC); const std::vector perm_to_nhwc = {0, 2, 3, 1}; if (channel_last) { input_tensor.ShareDataWith(*input); output_tensor.ShareDataWith(*output); } else { // transpose input from NCHW to NHWC TransposeFromMLUTensor(ctx, perm_to_nhwc, input, &input_tensor, true /*need_reshape_or_alloc*/); auto output_dims = output->dims(); output_tensor.mutable_data( {output_dims[0], output_dims[2], output_dims[3], output_dims[1]}, ctx.GetPlace()); } // transpose filter from MCHW to MHWC phi::DenseTensor trans_filter(filter->type()); TransposeFromMLUTensor(ctx, perm_to_nhwc, filter, &trans_filter, true /*need_reshape_or_alloc*/); // construct MLU attr cnnlTensorLayout_t data_layout = CNNL_LAYOUT_NHWC; MLUCnnlTensorDesc input_desc( input_tensor, data_layout, ToCnnlDataType(input_tensor.dtype())); MLUCnnlTensorDesc filter_desc( trans_filter, data_layout, ToCnnlDataType(trans_filter.type())); MLUCnnlTensorDesc output_desc( output_tensor, data_layout, ToCnnlDataType(output_tensor.dtype())); MLUCnnlConvolutionDesc conv_desc(in_dims_size, paddings.data(), strides.data(), dilations.data(), groups, ToCnnlDataType()); MLUCnnl::ConvBackpropInput(ctx, conv_desc.get(), filter_desc.get(), GetBasePtr(&trans_filter), input_desc.get(), GetBasePtr(&input_tensor), output_desc.get(), GetBasePtr(&output_tensor)); if (!channel_last) { // transpose output from NHWC to NCHW const std::vector perm_to_nchw = {0, 3, 1, 2}; TransposeFromMLUTensor(ctx, perm_to_nchw, &output_tensor, output, false /*need_reshape_or_alloc*/); } } }; template class Conv2DTransposeGradMLUKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { const phi::DenseTensor* input = ctx.Input("Input"); const phi::DenseTensor* filter = ctx.Input("Filter"); const phi::DenseTensor* output_grad = ctx.Input(framework::GradVarName("Output")); phi::DenseTensor* input_grad = ctx.Output(framework::GradVarName("Input")); phi::DenseTensor* filter_grad = ctx.Output(framework::GradVarName("Filter")); if ((!input_grad) && (!filter_grad)) return; std::vector strides = ctx.Attr>("strides"); std::vector paddings = ctx.Attr>("paddings"); std::vector dilations = ctx.Attr>("dilations"); const int groups = ctx.Attr("groups"); std::string padding_algorithm = ctx.Attr("padding_algorithm"); const std::string data_format = ctx.Attr("data_format"); const phi::DataLayout data_layout = phi::StringToDataLayout(data_format); auto in_dims = input->dims(); auto filter_dims = filter->dims(); auto in_dims_size = in_dims.size(); const bool channel_last = (data_layout == phi::DataLayout::kNHWC); framework::DDim in_data_dims; if (channel_last) { in_data_dims = phi::slice_ddim(in_dims, 1, in_dims.size() - 1); } else { in_data_dims = phi::slice_ddim(in_dims, 2, in_dims.size()); } framework::DDim filter_data_dims = phi::slice_ddim(filter_dims, 2, filter_dims.size()); std::vector ksize = phi::vectorize(filter_data_dims); phi::UpdatePaddingAndDilation( &paddings, &dilations, padding_algorithm, in_data_dims, strides, ksize); phi::DenseTensor input_tensor(input->type()); phi::DenseTensor output_grad_tensor(output_grad->type()); output_grad_tensor.set_layout(DataLayout::kNHWC); const std::vector perm_to_nhwc = {0, 2, 3, 1}; if (channel_last) { input_tensor.ShareDataWith(*input); output_grad_tensor.ShareDataWith(*output_grad); } else { // transpose input from NCHW to NHWC TransposeFromMLUTensor(ctx, perm_to_nhwc, input, &input_tensor, true /*need_reshape_or_alloc*/); TransposeFromMLUTensor(ctx, perm_to_nhwc, output_grad, &output_grad_tensor, true /*need_reshape_or_alloc*/); } // transpose filter from MCHW to MHWC phi::DenseTensor trans_filter(filter->type()); TransposeFromMLUTensor(ctx, perm_to_nhwc, filter, &trans_filter, true /*need_reshape_or_alloc*/); // MLU descs cnnlTensorLayout_t data_layout_mlu = CNNL_LAYOUT_NHWC; MLUCnnlTensorDesc input_desc( input_tensor, data_layout_mlu, ToCnnlDataType(input_tensor.dtype())); MLUCnnlTensorDesc trans_filter_desc( trans_filter, data_layout_mlu, ToCnnlDataType(trans_filter.type())); MLUCnnlTensorDesc output_grad_desc( output_grad_tensor, data_layout_mlu, ToCnnlDataType(output_grad_tensor.dtype())); MLUCnnlConvolutionDesc conv_desc(in_dims_size, paddings.data(), strides.data(), dilations.data(), groups, ToCnnlDataType()); if (filter_grad) { filter_grad->mutable_data(ctx.GetPlace()); phi::DenseTensor filter_grad_tensor(filter_grad->type()); // filter_grad always MCHW // filter_grad_tensor always MHWC auto filter_grad_dims = filter_grad->dims(); filter_grad_tensor.mutable_data({filter_grad_dims[0], filter_grad_dims[2], filter_grad_dims[3], filter_grad_dims[1]}, ctx.GetPlace()); //} filter_grad_tensor.set_layout(DataLayout::kNHWC); MLUCnnlTensorDesc filter_grad_desc( filter_grad_tensor, data_layout_mlu, ToCnnlDataType(filter_grad_tensor.dtype())); MLUCnnl::ConvBackpropFilter(ctx, conv_desc.get(), output_grad_desc.get(), GetBasePtr(output_grad), input_desc.get(), GetBasePtr(&input_tensor), filter_grad_desc.get(), GetBasePtr(&filter_grad_tensor)); // transpose output from MHWC to MCHW const std::vector perm_to_mchw = {0, 3, 1, 2}; TransposeFromMLUTensor(ctx, perm_to_mchw, &filter_grad_tensor, filter_grad, false /*need_reshape_or_alloc*/); } if (input_grad) { input_grad->mutable_data(ctx.GetPlace()); phi::DenseTensor input_grad_tensor(input_grad->type()); input_tensor.set_layout(DataLayout::kNHWC); if (channel_last) { input_grad_tensor.ShareDataWith(*input_grad); } else { auto input_grad_dims = input_grad->dims(); input_grad_tensor.mutable_data({input_grad_dims[0], input_grad_dims[2], input_grad_dims[3], input_grad_dims[1]}, ctx.GetPlace()); } MLUCnnlTensorDesc input_grad_desc( input_grad_tensor, data_layout_mlu, ToCnnlDataType(input_grad_tensor.dtype())); MLUCnnl::ConvolutionForward(ctx, conv_desc.get(), nullptr /*alpha*/, nullptr /*beta*/, nullptr /*bias_desc*/, nullptr /*bias_ptr*/, output_grad_desc.get(), GetBasePtr(&output_grad_tensor), trans_filter_desc.get(), GetBasePtr(&trans_filter), input_grad_desc.get(), GetBasePtr(&input_grad_tensor)); if (!channel_last) { // transpose output from NHWC to NCHW const std::vector perm_to_nchw = {0, 3, 1, 2}; TransposeFromMLUTensor(ctx, perm_to_nchw, &input_grad_tensor, input_grad, false /*need_reshape_or_alloc*/); } } } }; } // namespace operators } // namespace paddle namespace ops = paddle::operators; namespace plat = paddle::platform; REGISTER_OP_MLU_KERNEL(conv2d_transpose, ops::Conv2DTransposeMLUKernel, ops::Conv2DTransposeMLUKernel); REGISTER_OP_MLU_KERNEL(conv2d_transpose_grad, ops::Conv2DTransposeGradMLUKernel, ops::Conv2DTransposeGradMLUKernel);