/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include #include #include #include using namespace paddle; // NOLINT using namespace std; // NOLINT static const string& CONFIG_FILE = "trainer/tests/sample_trainer_rnn_gen.conf"; static const string& NEST_CONFIG_FILE = "trainer/tests/sample_trainer_nest_rnn_gen.conf"; static const string& OUTPUT_DIR = "trainer/tests/dump_text.test"; static string modelDir = "trainer/tests/rnn_gen_test_model_dir/t1"; // NOLINT static string expectFile = // NOLINT "trainer/tests/rnn_gen_test_model_dir/r1.test"; // NOLINT DECLARE_string(config_args); vector readRetFile(const string& fname) { ifstream inFile(fname); float ret; vector nums; while (inFile >> ret) { nums.push_back(ret); } return nums; } void checkOutput(const string& expRetFile) { vector rets = readRetFile(OUTPUT_DIR); vector expRets = readRetFile(expRetFile); EXPECT_EQ(rets.size(), expRets.size()); for (size_t i = 0; i < rets.size(); i++) { EXPECT_FLOAT_EQ(rets[i], expRets[i]); } } void prepareInArgs(vector& inArgs, const size_t batchSize, bool useGpu, bool hasSubseq) { inArgs.clear(); // sentence id Argument sentId; sentId.value = nullptr; if (hasSubseq) { // as there is only one sequence, there is only one label. IVector::resizeOrCreate(sentId.ids, 1, useGpu); sentId.ids->setElement(0, 0); } else { // as there is batchSize word, there is batchSize label. IVector::resizeOrCreate(sentId.ids, batchSize, useGpu); for (size_t i = 0; i < batchSize; ++i) sentId.ids->setElement(i, i); } inArgs.emplace_back(sentId); // a dummy layer to decide batch size Argument dummyInput; dummyInput.value = Matrix::create(batchSize, 2, false, useGpu); dummyInput.value->randomizeUniform(); if (hasSubseq) { // generate one sequence with batchSize subsequence, // and each subsequence has only one word. dummyInput.sequenceStartPositions = ICpuGpuVector::create(2, false); int* buf = dummyInput.sequenceStartPositions->getMutableData(false); dummyInput.subSequenceStartPositions = ICpuGpuVector::create(batchSize + 1, false); int* subBuf = dummyInput.subSequenceStartPositions->getMutableData(false); buf[0] = 0; buf[1] = batchSize; for (size_t i = 0; i < batchSize + 1; i++) subBuf[i] = i; } inArgs.emplace_back(dummyInput); } void testGeneration(const string& configFile, bool useGpu, bool hasSubseq, const string& expRetFile) { FLAGS_use_gpu = useGpu; auto config = std::make_shared(configFile); unique_ptr gradientMachine(GradientMachine::create(*config)); gradientMachine->loadParameters(modelDir); vector inArgs(2); const size_t batchSize = 15; prepareInArgs(inArgs, batchSize, useGpu, hasSubseq); vector outArgs; unique_ptr testEvaluator(gradientMachine->makeEvaluator()); testEvaluator->start(); gradientMachine->forward(inArgs, &outArgs, PASS_TEST); gradientMachine->eval(testEvaluator.get()); testEvaluator->finish(); checkOutput(expRetFile); } #ifndef PADDLE_TYPE_DOUBLE TEST(RecurrentGradientMachine, test_generation) { #ifndef PADDLE_WITH_CUDA const auto useGpuConfs = {false}; #else const auto useGpuConfs = {true, false}; #endif auto testGen = [&](const string& configFile, bool hasSubseq, const string& expRetFile, bool beam_search) { FLAGS_config_args = beam_search ? "beam_search=1" : "beam_search=0"; for (auto useGpu : useGpuConfs) { LOG(INFO) << configFile << " useGpu=" << useGpu << " beam_search=" << beam_search; testGeneration(configFile, useGpu, hasSubseq, expRetFile); } }; testGen(CONFIG_FILE, false, expectFile + ".nobeam", false); // no beam search testGen(CONFIG_FILE, false, expectFile + ".beam", true); // beam search // In hierarchical RNN, beam search and one way search are only in inner-RNN, // outer-RNN will concat the generated inner-results (first for beam search) // from inner-RNN. Thus, they have the same outer-results. testGen(NEST_CONFIG_FILE, true, expectFile + ".nest", false); // no beam search testGen(NEST_CONFIG_FILE, true, expectFile + ".nest", true); // beam search } #endif int main(int argc, char** argv) { initMain(argc, argv); initPython(argc, argv); CHECK(argc == 1 || argc == 3); if (argc == 3) { modelDir = argv[1]; expectFile = argv[2]; } testing::InitGoogleTest(&argc, argv); return RUN_ALL_TESTS(); }