// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include #include #include "paddle/phi/kernels/tile_kernel.h" #include "paddle/phi/backends/xpu/enforce_xpu.h" #include "paddle/phi/core/kernel_registry.h" #include "paddle/phi/kernels/funcs/eigen/common.h" #include "paddle/phi/kernels/funcs/eigen/eigen_function.h" namespace phi { template void TileKernel(const Context& dev_ctx, const DenseTensor& x, const IntArray& repeat_times_arr, DenseTensor* out) { auto rank = x.dims().size(); PADDLE_ENFORCE_GE( rank, 1, errors::InvalidArgument( "The rank of the input 'x' for tile op must be a positive " "integer, but the value received is %d.", rank)); PADDLE_ENFORCE_LE( rank, MAX_RANK_SUPPORTED, errors::InvalidArgument( "The rank of the input 'x' for tile op " "must be less than or equal to %d, but the value received is %d.", MAX_RANK_SUPPORTED, rank)); std::vector repeat_times = repeat_times_arr.GetData(); int repeat_times_size = repeat_times.size(); PADDLE_ENFORCE_GE( repeat_times_size, 1, errors::InvalidArgument( "The number of elements of the input 'repeat_times' for tile " "op must be positive, but the value received is %d.", repeat_times_size)); PADDLE_ENFORCE_LE( repeat_times_size, MAX_RANK_SUPPORTED, errors::InvalidArgument( "The number of elements of the input 'repeat_times' for tile op " "must be less than or equal to %d, but the value received is %d.", MAX_RANK_SUPPORTED, repeat_times_size)); auto in_dims = x.dims(); for (size_t i = 0; i < repeat_times.size(); ++i) { PADDLE_ENFORCE_GT( repeat_times[i], 0, errors::InvalidArgument( "All elements of the input 'repeat_times' for tile op must " "be positive integers, but the value received is %d.", repeat_times[i])); } auto vec_in_dims = phi::vectorize(in_dims); if (repeat_times.size() < vec_in_dims.size()) { int diff = vec_in_dims.size() - repeat_times.size(); repeat_times.insert(repeat_times.begin(), diff, 1); } else { int diff = repeat_times.size() - vec_in_dims.size(); vec_in_dims.insert(vec_in_dims.begin(), diff, 1); } PADDLE_ENFORCE_EQ( repeat_times.size(), vec_in_dims.size(), errors::InvalidArgument( "The rank (%d) of the input 'x' and the rank (%d) of the input " "'repeat_times' for tile op must match after promotion.", vec_in_dims.size(), repeat_times.size())); DDim new_in_dims = phi::make_ddim(vec_in_dims); DDim out_dims(new_in_dims); for (size_t i = 0; i < repeat_times.size(); ++i) { out_dims[i] *= repeat_times[i]; } auto vec_out_dims = phi::vectorize(out_dims); out->Resize(out_dims); dev_ctx.template Alloc(out); std::vector temp(repeat_times.size(), 1); if (repeat_times == temp) { out->Resize(x.dims()); dev_ctx.template Alloc(out); int r = xpu::copy(dev_ctx.x_context(), x.data(), out->data(), x.numel()); PADDLE_ENFORCE_XDNN_SUCCESS(r, "copy"); return; } int ret = XPU_SUCCESS; if (std::is_same::value) { ret = xpu::broadcast(dev_ctx.x_context(), reinterpret_cast(x.data()), reinterpret_cast(out->data()), vec_in_dims, vec_out_dims); } else { ret = xpu::broadcast(dev_ctx.x_context(), x.data(), out->data(), vec_in_dims, vec_out_dims); } PADDLE_ENFORCE_XDNN_SUCCESS(ret, "broadcast"); } } // namespace phi PD_REGISTER_KERNEL( tile, XPU, ALL_LAYOUT, phi::TileKernel, bool, float, int, int64_t) {}