# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import math import os import sys from paddle.trainer_config_helpers import * #file paths word_dict_file = './data/wordDict.txt' label_dict_file = './data/targetDict.txt' predicate_file= './data/verbDict.txt' train_list_file = './data/train.list' test_list_file = './data/test.list' is_test = get_config_arg('is_test', bool, False) is_predict = get_config_arg('is_predict', bool, False) if not is_predict: #load dictionaries word_dict = dict() label_dict = dict() predicate_dict = dict() with open(word_dict_file, 'r') as f_word, \ open(label_dict_file, 'r') as f_label, \ open(predicate_file, 'r') as f_pre: for i, line in enumerate(f_word): w = line.strip() word_dict[w] = i for i, line in enumerate(f_label): w = line.strip() label_dict[w] = i for i, line in enumerate(f_pre): w = line.strip() predicate_dict[w] = i if is_test: train_list_file = None #define data provider define_py_data_sources2( train_list=train_list_file, test_list=test_list_file, module='dataprovider', obj='process', args={'word_dict': word_dict, 'label_dict': label_dict, 'predicate_dict': predicate_dict }) word_dict_len = len(word_dict) label_dict_len = len(label_dict) pred_len = len(predicate_dict) else: word_dict_len = get_config_arg('dict_len', int) label_dict_len = get_config_arg('label_len', int) pred_len = get_config_arg('pred_len', int) ############################## Hyper-parameters ################################## mark_dict_len = 2 word_dim = 32 mark_dim = 5 hidden_dim = 512 depth = 8 ########################### Optimizer ####################################### settings( batch_size=150, learning_method=MomentumOptimizer(momentum=0), learning_rate=2e-2, regularization=L2Regularization(8e-4), is_async=False, model_average=ModelAverage(average_window=0.5, max_average_window=10000), ) ####################################### network ############################## #8 features and 1 target word = data_layer(name='word_data', size=word_dict_len) predicate = data_layer(name='verb_data', size=pred_len) ctx_n2 = data_layer(name='ctx_n2_data', size=word_dict_len) ctx_n1 = data_layer(name='ctx_n1_data', size=word_dict_len) ctx_0 = data_layer(name='ctx_0_data', size=word_dict_len) ctx_p1 = data_layer(name='ctx_p1_data', size=word_dict_len) ctx_p2 = data_layer(name='ctx_p2_data', size=word_dict_len) mark = data_layer(name='mark_data', size=mark_dict_len) if not is_predict: target = data_layer(name='target', size=label_dict_len) default_std=1/math.sqrt(hidden_dim)/3.0 emb_para = ParameterAttribute(name='emb', initial_std=0., learning_rate=0.) std_0 = ParameterAttribute(initial_std=0.) std_default = ParameterAttribute(initial_std=default_std) predicate_embedding = embedding_layer(size=word_dim, input=predicate, param_attr=ParameterAttribute(name='vemb',initial_std=default_std)) mark_embedding = embedding_layer(name='word_ctx-in_embedding', size=mark_dim, input=mark, param_attr=std_0) word_input=[word, ctx_n2, ctx_n1, ctx_0, ctx_p1, ctx_p2] emb_layers = [embedding_layer(size=word_dim, input=x, param_attr=emb_para) for x in word_input] emb_layers.append(predicate_embedding) emb_layers.append(mark_embedding) hidden_0 = mixed_layer( name='hidden0', size=hidden_dim, bias_attr=std_default, input=[ full_matrix_projection(input=emb, param_attr=std_default ) for emb in emb_layers ]) mix_hidden_lr = 1e-3 lstm_para_attr = ParameterAttribute(initial_std=0.0, learning_rate=1.0) hidden_para_attr = ParameterAttribute(initial_std=default_std, learning_rate=mix_hidden_lr) lstm_0 = lstmemory(name='lstm0', input=hidden_0, act=ReluActivation(), gate_act=SigmoidActivation(), state_act=SigmoidActivation(), bias_attr=std_0, param_attr=lstm_para_attr) #stack L-LSTM and R-LSTM with direct edges input_tmp = [hidden_0, lstm_0] for i in range(1, depth): mix_hidden = mixed_layer(name='hidden'+str(i), size=hidden_dim, bias_attr=std_default, input=[full_matrix_projection(input=input_tmp[0], param_attr=hidden_para_attr), full_matrix_projection(input=input_tmp[1], param_attr=lstm_para_attr) ] ) lstm = lstmemory(name='lstm'+str(i), input=mix_hidden, act=ReluActivation(), gate_act=SigmoidActivation(), state_act=SigmoidActivation(), reverse=((i % 2)==1), bias_attr=std_0, param_attr=lstm_para_attr) input_tmp = [mix_hidden, lstm] feature_out = mixed_layer(name='output', size=label_dict_len, bias_attr=std_default, input=[full_matrix_projection(input=input_tmp[0], param_attr=hidden_para_attr), full_matrix_projection(input=input_tmp[1], param_attr=lstm_para_attr) ], ) if not is_predict: crf_l = crf_layer( name = 'crf', size = label_dict_len, input = feature_out, label = target, param_attr=ParameterAttribute(name='crfw',initial_std=default_std, learning_rate=mix_hidden_lr) ) crf_dec_l = crf_decoding_layer(name = 'crf_dec_l', size = label_dict_len, input = feature_out, label = target, param_attr=ParameterAttribute(name='crfw') ) eval = sum_evaluator(input=crf_dec_l) outputs(crf_l) else: crf_dec_l = crf_decoding_layer(name = 'crf_dec_l', size = label_dict_len, input = feature_out, param_attr=ParameterAttribute(name='crfw') ) outputs(crf_dec_l)