# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import unittest import numpy as np import paddle import paddle.fluid as fluid from paddle import ones_like from paddle.fluid import core, Program, program_guard class TestOnesLikeAPIError(unittest.TestCase): def test_errors(self): with program_guard(Program(), Program()): x = paddle.fluid.data('x', [3, 4]) self.assertRaises(TypeError, ones_like, x, 'int8') class TestOnesLikeAPI(unittest.TestCase): def test_api(self): shape = [3, 4] startup_program = Program() train_program = Program() with program_guard(train_program, startup_program): x = paddle.fluid.data('X', shape) # 'bool', 'float32', 'float64', 'int32', 'int64' out1 = ones_like(x) out2 = ones_like(x, np.bool) out3 = ones_like(x, 'float64') out4 = ones_like(x, 'int32') out5 = ones_like(x, 'int64') place = fluid.CUDAPlace(0) if core.is_compiled_with_cuda( ) else fluid.CPUPlace() exe = fluid.Executor(place) outs = exe.run(train_program, feed={'X': np.ones(shape).astype('float32')}, fetch_list=[out1, out2, out3, out4, out5]) for i, dtype in enumerate( [np.float32, np.bool, np.float64, np.int32, np.int64]): self.assertEqual(outs[i].dtype, dtype) self.assertEqual((outs[i] == np.ones(shape, dtype)).all(), True) class TestOnesLikeImpeartive(unittest.TestCase): def test_out(self): shape = [3, 4] place = fluid.CUDAPlace(0) if core.is_compiled_with_cuda( ) else fluid.CPUPlace() paddle.disable_static(place) x = paddle.to_tensor(np.ones(shape)) for dtype in [np.bool, np.float32, np.float64, np.int32, np.int64]: out = ones_like(x, dtype) self.assertEqual((out.numpy() == np.ones(shape, dtype)).all(), True) out = paddle.tensor.ones_like(x) self.assertEqual((out.numpy() == np.ones(shape, dtype)).all(), True) out = paddle.tensor.creation.ones_like(x) self.assertEqual((out.numpy() == np.ones(shape, dtype)).all(), True) paddle.enable_static() if __name__ == "__main__": unittest.main()