# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np from eager_op_test import OpTest, convert_float_to_uint16 import paddle from paddle.fluid import core def compute_segment_sum(x, segment_ids): length = segment_ids[-1] + 1 target_shape = list(x.shape) target_shape[0] = length results = np.zeros(target_shape, dtype=x.dtype) for index, ids in enumerate(segment_ids): results[ids, :] += x[index, :] return results def compute_segment_mean(x, segment_ids): length = segment_ids[-1] + 1 target_shape = list(x.shape) target_shape[0] = length results = np.zeros(target_shape, dtype=x.dtype) count = np.zeros(length, dtype=x.dtype) + 1e-8 for index, ids in enumerate(segment_ids): results[ids, :] += x[index, :] count[ids] += 1 results = results / count.reshape([-1, 1]) return results def compute_segment_min_max(x, segment_ids, pooltype="MAX"): length = segment_ids[-1] + 1 target_shape = list(x.shape) target_shape[0] = length gradient = np.zeros_like(x) results = np.zeros(target_shape, dtype=x.dtype) last_idx = 0 current_id = segment_ids[0] for idx in range(1, len(segment_ids) + 1): if idx < len(segment_ids): if segment_ids[idx] == current_id: continue sub_x = x[last_idx:idx, :] if pooltype == "MAX": results[current_id] = np.amax(sub_x, axis=0) elif pooltype == "MIN": results[current_id] = np.amin(sub_x, axis=0) else: raise ValueError("Invalid pooltype, only MAX, MIN supported!") gradient[last_idx:idx, :][sub_x == results[current_id]] = 1 last_idx = idx if idx < len(segment_ids): current_id = segment_ids[idx] return results, gradient / results.size def segment_pool_split(X, SegmentIds, pooltype): if pooltype == "SUM": return paddle.geometric.segment_sum(X, SegmentIds) elif pooltype == "MEAN": return paddle.geometric.segment_mean(X, SegmentIds) elif pooltype == "MIN": return paddle.geometric.segment_min(X, SegmentIds) elif pooltype == "MAX": return paddle.geometric.segment_max(X, SegmentIds) class TestSegmentOps(OpTest): def set_data(self): if self.dtype == np.uint16: x = np.random.uniform(-1, 1, self.shape).astype(self.np_dtype) else: x = np.random.uniform(-1, 1, self.shape).astype(self.dtype) segment_ids = self.set_segment(len(x), len(x) // 5 + 1) return x, segment_ids def set_segment(self, origin_len, reduce_len): segment = np.zeros(reduce_len, dtype='int64') segment = np.random.randint(0, reduce_len, size=[origin_len]) segment = np.sort(segment) return segment.astype('int64') def compute(self, x, segment_ids): return compute_segment_sum(x, segment_ids) def prepare(self): self.op_type = "segment_pool" self.python_api = segment_pool_split self.python_out_sig = ["Out"] self.dtype = np.float64 self.shape = [30, 15] self.attrs = {"pooltype": "SUM"} def setUp(self): self.prepare() x, segment_ids = self.set_data() result = self.compute(x, segment_ids) self.inputs = { 'X': x, 'SegmentIds': segment_ids.astype(np.int64), } if self.dtype == np.uint16: self.outputs = {'Out': result.astype(self.np_dtype)} else: self.outputs = {'Out': result.astype(self.dtype)} self.convert_bf16() def test_check_output(self): self.check_output() def test_check_grad(self): self.check_grad(["X"], "Out") def convert_bf16(self): if self.dtype == np.uint16: self.inputs['X'] = convert_float_to_uint16(self.inputs['X']) self.outputs['Out'] = convert_float_to_uint16(self.outputs['Out']) self.place = core.CUDAPlace(0) class TestSegmentSum2(TestSegmentOps): def prepare(self): super().prepare() self.shape = [40, 20] self.dtype = np.float32 def setUp(self): self.prepare() x, segment_ids = self.set_data() result = self.compute(x, segment_ids) self.inputs = { 'X': x.astype(self.dtype), 'SegmentIds': segment_ids.astype(np.int32), } self.outputs = {'Out': result.astype(self.dtype)} class TestSegmentMax(TestSegmentOps): def compute(self, x, segment_ids): result, self.gradient = compute_segment_min_max( x, segment_ids, pooltype="MAX" ) return result def prepare(self): super().prepare() self.shape = [40, 20] self.attrs = {'pooltype': "MAX"} def test_check_grad(self): self.check_grad(["X"], "Out", user_defined_grads=[self.gradient]) class TestSegmentMax2(TestSegmentMax): def prepare(self): super().prepare() self.dtype = np.float32 class TestSegmentMin(TestSegmentMax): def compute(self, x, segment_ids): result, self.gradient = compute_segment_min_max( x, segment_ids, pooltype="MIN" ) return result def prepare(self): super().prepare() self.attrs = {'pooltype': "MIN"} class TestSegmentMin2(TestSegmentMin): def prepare(self): super().prepare() self.dtype = np.float32 class TestSegmentMean(TestSegmentOps): def compute(self, x, segment_ids): return compute_segment_mean(x, segment_ids) def prepare(self): super().prepare() self.shape = [40, 20] self.attrs = {'pooltype': "MEAN"} def setUp(self): self.prepare() x, segment_ids = self.set_data() result = self.compute(x, segment_ids) self.inputs = {'X': x, 'SegmentIds': segment_ids} if self.dtype == np.uint16: astype = self.np_dtype else: astype = self.dtype self.outputs = { 'Out': result, 'SummedIds': compute_segment_sum( np.ones([len(x), 1]).astype(astype), segment_ids ), } self.convert_bf16() class TestSegmentMean2(TestSegmentMean): def prepare(self): super().prepare() self.dtype = np.float32 self.shape = [30, 20] self.attrs = {'pooltype': "MEAN"} class TestSegmentSumFP16Op(TestSegmentOps): def prepare(self): super().prepare() self.dtype = np.float16 class TestSegmentMaxFP16Op(TestSegmentMax): def prepare(self): super().prepare() self.dtype = np.float16 class TestSegmentMinFP16Op(TestSegmentMin): def prepare(self): super().prepare() self.dtype = np.float16 class TestSegmentMeanFP16Op(TestSegmentMean): def prepare(self): super().prepare() self.dtype = np.float16 @unittest.skipIf( not core.is_compiled_with_cuda() or not core.is_bfloat16_supported(core.CUDAPlace(0)), "core is not compiled with CUDA or not support bfloat16", ) class TestSegmentSumBF16Op(TestSegmentOps): def prepare(self): super().prepare() self.dtype = np.uint16 self.np_dtype = np.float32 def test_check_output(self): self.check_output_with_place(self.place) def test_check_grad(self): self.check_grad_with_place(self.place, ["X"], "Out") @unittest.skipIf( not core.is_compiled_with_cuda() or not core.is_bfloat16_supported(core.CUDAPlace(0)), "core is not compiled with CUDA or not support bfloat16", ) class TestSegmentMaxBF16Op(TestSegmentMax): def prepare(self): super().prepare() self.dtype = np.uint16 self.np_dtype = np.float32 def test_check_output(self): self.check_output_with_place(self.place) def test_check_grad(self): self.check_grad_with_place( self.place, ["X"], "Out", user_defined_grads=[self.gradient] ) @unittest.skipIf( not core.is_compiled_with_cuda() or not core.is_bfloat16_supported(core.CUDAPlace(0)), "core is not compiled with CUDA or not support bfloat16", ) class TestSegmentMinBF16Op(TestSegmentMin): def prepare(self): super().prepare() self.dtype = np.uint16 self.np_dtype = np.float32 def test_check_output(self): self.check_output_with_place(self.place) def test_check_grad(self): self.check_grad_with_place( self.place, ["X"], "Out", user_defined_grads=[self.gradient] ) @unittest.skipIf( not core.is_compiled_with_cuda() or not core.is_bfloat16_supported(core.CUDAPlace(0)), "core is not compiled with CUDA or not support bfloat16", ) class TestSegmentMeanBF16Op(TestSegmentMean): def prepare(self): super().prepare() self.dtype = np.uint16 self.np_dtype = np.float32 def test_check_output(self): self.check_output_with_place(self.place) def test_check_grad(self): self.check_grad_with_place(self.place, ["X"], "Out") class API_SegmentOpsTest(unittest.TestCase): def test_static(self): with paddle.static.program_guard(paddle.static.Program()): x = paddle.static.data(name="x", shape=[3, 3], dtype="float32") y = paddle.static.data(name='y', shape=[3], dtype='int32') res_sum = paddle.incubate.segment_sum(x, y) res_mean = paddle.incubate.segment_mean(x, y) res_max = paddle.incubate.segment_max(x, y) res_min = paddle.incubate.segment_min(x, y) exe = paddle.static.Executor(paddle.CPUPlace()) data1 = np.array([[1, 2, 3], [3, 2, 1], [4, 5, 6]], dtype='float32') data2 = np.array([0, 0, 1], dtype="int32") np_sum = np.array([[4, 4, 4], [4, 5, 6]], dtype="float32") np_mean = np.array([[2, 2, 2], [4, 5, 6]], dtype="float32") np_max = np.array([[3, 2, 3], [4, 5, 6]], dtype="float32") np_min = np.array([[1, 2, 1], [4, 5, 6]], dtype="float32") ret = exe.run( feed={'x': data1, 'y': data2}, fetch_list=[res_sum, res_mean, res_max, res_min], ) for np_res, ret_res in zip([np_sum, np_mean, np_max, np_min], ret): np.testing.assert_allclose(np_res, ret_res, rtol=1e-05, atol=1e-06) def test_dygraph(self): device = paddle.CPUPlace() with paddle.fluid.dygraph.guard(device): x = paddle.to_tensor( [[1, 2, 3], [3, 2, 1], [4, 5, 6]], dtype='float32' ) y = paddle.to_tensor([0, 0, 1], dtype="int32") res_sum = paddle.incubate.segment_sum(x, y) res_mean = paddle.incubate.segment_mean(x, y) res_max = paddle.incubate.segment_max(x, y) res_min = paddle.incubate.segment_min(x, y) np_sum = np.array([[4, 4, 4], [4, 5, 6]], dtype="float32") np_mean = np.array([[2, 2, 2], [4, 5, 6]], dtype="float32") np_max = np.array([[3, 2, 3], [4, 5, 6]], dtype="float32") np_min = np.array([[1, 2, 1], [4, 5, 6]], dtype="float32") ret = [res_sum, res_mean, res_max, res_min] for np_res, ret_res in zip([np_sum, np_mean, np_max, np_min], ret): np.testing.assert_allclose( np_res, ret_res.numpy(), rtol=1e-05, atol=1e-06 ) class API_GeometricSegmentOpsTest(unittest.TestCase): def test_static(self): with paddle.static.program_guard(paddle.static.Program()): x = paddle.static.data(name="x", shape=[3, 3], dtype="float32") y = paddle.static.data(name='y', shape=[3], dtype='int32') res_sum = paddle.geometric.segment_sum(x, y) res_mean = paddle.geometric.segment_mean(x, y) res_max = paddle.geometric.segment_max(x, y) res_min = paddle.geometric.segment_min(x, y) exe = paddle.static.Executor(paddle.CPUPlace()) data1 = np.array([[1, 2, 3], [3, 2, 1], [4, 5, 6]], dtype='float32') data2 = np.array([0, 0, 1], dtype="int32") np_sum = np.array([[4, 4, 4], [4, 5, 6]], dtype="float32") np_mean = np.array([[2, 2, 2], [4, 5, 6]], dtype="float32") np_max = np.array([[3, 2, 3], [4, 5, 6]], dtype="float32") np_min = np.array([[1, 2, 1], [4, 5, 6]], dtype="float32") ret = exe.run( feed={'x': data1, 'y': data2}, fetch_list=[res_sum, res_mean, res_max, res_min], ) for np_res, ret_res in zip([np_sum, np_mean, np_max, np_min], ret): np.testing.assert_allclose(np_res, ret_res, rtol=1e-05, atol=1e-06) def test_dygraph(self): device = paddle.CPUPlace() with paddle.fluid.dygraph.guard(device): x = paddle.to_tensor( [[1, 2, 3], [3, 2, 1], [4, 5, 6]], dtype='float32' ) y = paddle.to_tensor([0, 0, 1], dtype="int32") res_sum = paddle.geometric.segment_sum(x, y) res_mean = paddle.geometric.segment_mean(x, y) res_max = paddle.geometric.segment_max(x, y) res_min = paddle.geometric.segment_min(x, y) np_sum = np.array([[4, 4, 4], [4, 5, 6]], dtype="float32") np_mean = np.array([[2, 2, 2], [4, 5, 6]], dtype="float32") np_max = np.array([[3, 2, 3], [4, 5, 6]], dtype="float32") np_min = np.array([[1, 2, 1], [4, 5, 6]], dtype="float32") ret = [res_sum, res_mean, res_max, res_min] for np_res, ret_res in zip([np_sum, np_mean, np_max, np_min], ret): np.testing.assert_allclose( np_res, ret_res.numpy(), rtol=1e-05, atol=1e-06 ) def test_dygraph_cpu_float16(self): device = paddle.CPUPlace() with paddle.fluid.dygraph.guard(device): x = paddle.to_tensor( [[1, 2, 3], [3, 2, 1], [4, 5, 6]], dtype='float16' ) y = paddle.to_tensor([0, 0, 1], dtype="int32") res_sum = paddle.geometric.segment_sum(x, y) res_mean = paddle.geometric.segment_mean(x, y) res_max = paddle.geometric.segment_max(x, y) res_min = paddle.geometric.segment_min(x, y) np_sum = np.array([[4, 4, 4], [4, 5, 6]], dtype="float16") np_mean = np.array([[2, 2, 2], [4, 5, 6]], dtype="float16") np_max = np.array([[3, 2, 3], [4, 5, 6]], dtype="float16") np_min = np.array([[1, 2, 1], [4, 5, 6]], dtype="float16") ret = [res_sum, res_mean, res_max, res_min] for np_res, ret_res in zip([np_sum, np_mean, np_max, np_min], ret): np.testing.assert_allclose( np_res, ret_res.numpy(), rtol=1e-05, atol=1e-06 ) def test_dygraph_cuda_float16(self): if core.is_compiled_with_cuda(): device = paddle.CUDAPlace(0) with paddle.fluid.dygraph.guard(device): x = paddle.to_tensor( [[1, 2, 3], [3, 2, 1], [4, 5, 6]], dtype='float16' ) y = paddle.to_tensor([0, 0, 1], dtype="int32") res_sum = paddle.geometric.segment_sum(x, y) res_mean = paddle.geometric.segment_mean(x, y) res_max = paddle.geometric.segment_max(x, y) res_min = paddle.geometric.segment_min(x, y) np_sum = np.array([[4, 4, 4], [4, 5, 6]], dtype="float16") np_mean = np.array([[2, 2, 2], [4, 5, 6]], dtype="float16") np_max = np.array([[3, 2, 3], [4, 5, 6]], dtype="float16") np_min = np.array([[1, 2, 1], [4, 5, 6]], dtype="float16") ret = [res_sum, res_mean, res_max, res_min] for np_res, ret_res in zip([np_sum, np_mean, np_max, np_min], ret): np.testing.assert_allclose( np_res, ret_res.numpy(), rtol=1e-05, atol=1e-06 ) if __name__ == '__main__': paddle.enable_static() unittest.main()