# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from simple_nets import simple_fc_net, fc_with_batchnorm, init_data, bow_net from fake_reader import fake_imdb_reader from parallel_executor_test_base import TestParallelExecutorBase from functools import partial import paddle import paddle.fluid as fluid import paddle.fluid.core as core import unittest import os class TestFuseOptimizationOps(TestParallelExecutorBase): @classmethod def setUpClass(cls): os.environ['CPU_NUM'] = str(4) def _get_feed_dict(self): img, label = init_data() return {"image": img, "label": label} def _compare_fused_optimizer_ops(self, model, use_cuda, feed_dict=None, get_data_from_feeder=None, optimizer=fluid.optimizer.Adam): if use_cuda and not core.is_compiled_with_cuda(): return not_fuse_op_first_loss, not_fuse_op_last_loss = self.check_network_convergence( model, feed_dict=feed_dict, get_data_from_feeder=get_data_from_feeder, use_cuda=use_cuda, fuse_all_optimizer_ops=False, optimizer=optimizer) fuse_op_first_loss, fuse_op_last_loss = self.check_network_convergence( model, feed_dict=feed_dict, get_data_from_feeder=get_data_from_feeder, use_cuda=use_cuda, fuse_all_optimizer_ops=True, optimizer=optimizer) for loss in zip(not_fuse_op_first_loss, fuse_op_first_loss): self.assertAlmostEquals(loss[0], loss[1], delta=1e-6) for loss in zip(not_fuse_op_last_loss, fuse_op_last_loss): self.assertAlmostEquals(loss[0], loss[1], delta=1e-6) def _decorate_compare_fused_optimizer_ops(self, model, use_cuda, optimizer): self._compare_fused_optimizer_ops( model, use_cuda, feed_dict=self._get_feed_dict(), optimizer=optimizer) class TestFuseAdamOps(TestFuseOptimizationOps): def optimizer(self, learning_rate=1e-4): return fluid.optimizer.Adam(learning_rate=learning_rate) def test_batchnorm_fc_with_fuse_op(self): self._decorate_compare_fused_optimizer_ops( fc_with_batchnorm, True, optimizer=self.optimizer) self._decorate_compare_fused_optimizer_ops( fc_with_batchnorm, False, optimizer=self.optimizer) class TestFuseSGDOps(TestFuseAdamOps): def optimizer(self, learning_rate=1e-3): return fluid.optimizer.SGD(learning_rate=learning_rate) class TestFuseMomentumOps(TestFuseAdamOps): def optimizer(self, learning_rate=1e-3): return fluid.optimizer.Momentum( learning_rate=learning_rate, momentum=0.1) class TestSpareFuseAdamOps(TestFuseOptimizationOps): @classmethod def setUpClass(cls): os.environ['CPU_NUM'] = str(4) cls.word_dict_len = 5147 batch_size = 64 reader = fake_imdb_reader(cls.word_dict_len, batch_size * 100) reader = paddle.batch(reader, batch_size=batch_size)() cls.train_data = next(reader) def _get_data_from_feeder(self): place = fluid.CPUPlace() feeder = fluid.DataFeeder(feed_list=["words", "label"], place=place) return feeder.feed(self.train_data) def _decorate_compare_fused_optimizer_ops(self, model, use_cuda, optimizer): self._compare_fused_optimizer_ops( model, use_cuda, get_data_from_feeder=self._get_data_from_feeder, optimizer=optimizer) def optimizer(self, learning_rate=1e-4): return fluid.optimizer.Adam(learning_rate=learning_rate) def test_simple_bow_net_with_fuse_op(self): model = partial(bow_net, dict_dim=self.word_dict_len, is_sparse=True) self._decorate_compare_fused_optimizer_ops( model, True, optimizer=self.optimizer) self._decorate_compare_fused_optimizer_ops( model, False, optimizer=self.optimizer) class TestSpareFuseSGDOps(TestSpareFuseAdamOps): def optimizer(self, learning_rate=1e-3): return fluid.optimizer.SGD(learning_rate=learning_rate) class TestSpareFuseMomentumOps(TestSpareFuseAdamOps): def optimizer(self, learning_rate=1e-3): return fluid.optimizer.Momentum( learning_rate=learning_rate, momentum=0.1) class TestPassConflictBase(TestFuseAdamOps): def _compare_fused_optimizer_ops(self, model, use_cuda, feed_dict=None, get_data_from_feeder=None, optimizer=fluid.optimizer.Adam): if use_cuda and not core.is_compiled_with_cuda(): return self.check_pass_conflict( model, feed_dict=feed_dict, get_data_from_feeder=get_data_from_feeder, use_cuda=use_cuda, fuse_all_optimizer_ops=True, optimizer=optimizer, enable_sequential_execution=True) class TestFuseAdamOpsPassConflict(TestPassConflictBase): def optimizer(self, learning_rate=1e-4): return fluid.optimizer.Adam(learning_rate=learning_rate) def test_batchnorm_fc_with_fuse_op(self): self._decorate_compare_fused_optimizer_ops( fc_with_batchnorm, True, optimizer=self.optimizer) self._decorate_compare_fused_optimizer_ops( fc_with_batchnorm, False, optimizer=self.optimizer) class TestFuseSGDOpsPassConflict(TestFuseAdamOpsPassConflict): def optimizer(self, learning_rate=1e-3): return fluid.optimizer.SGD(learning_rate=learning_rate) class TestFuseMomentumOpsPassConflict(TestFuseAdamOpsPassConflict): def optimizer(self, learning_rate=1e-3): return fluid.optimizer.Momentum( learning_rate=learning_rate, momentum=0.1) if __name__ == '__main__': unittest.main()