# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # TODO: define statistical functions of a tensor from ..static import Variable from ..framework import LayerHelper from ..framework import core from paddle.fluid.framework import _in_legacy_dygraph, in_dygraph_mode from .search import where from ..fluid.data_feeder import check_type, check_variable_and_dtype from ..fluid.layers import utils import paddle from paddle import _C_ops, _legacy_C_ops __all__ = [] def mean(x, axis=None, keepdim=False, name=None): """ Computes the mean of the input tensor's elements along ``axis``. Args: x (Tensor): The input Tensor with data type float32, float64. axis (int|list|tuple, optional): The axis along which to perform mean calculations. ``axis`` should be int, list(int) or tuple(int). If ``axis`` is a list/tuple of dimension(s), mean is calculated along all element(s) of ``axis`` . ``axis`` or element(s) of ``axis`` should be in range [-D, D), where D is the dimensions of ``x`` . If ``axis`` or element(s) of ``axis`` is less than 0, it works the same way as :math:`axis + D` . If ``axis`` is None, mean is calculated over all elements of ``x``. Default is None. keepdim (bool, optional): Whether to reserve the reduced dimension(s) in the output Tensor. If ``keepdim`` is True, the dimensions of the output Tensor is the same as ``x`` except in the reduced dimensions(it is of size 1 in this case). Otherwise, the shape of the output Tensor is squeezed in ``axis`` . Default is False. name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`. Returns: Tensor, results of average along ``axis`` of ``x``, with the same data type as ``x``. Examples: .. code-block:: python import paddle x = paddle.to_tensor([[[1., 2., 3., 4.], [5., 6., 7., 8.], [9., 10., 11., 12.]], [[13., 14., 15., 16.], [17., 18., 19., 20.], [21., 22., 23., 24.]]]) out1 = paddle.mean(x) # [12.5] out2 = paddle.mean(x, axis=-1) # [[ 2.5 6.5 10.5] # [14.5 18.5 22.5]] out3 = paddle.mean(x, axis=-1, keepdim=True) # [[[ 2.5] # [ 6.5] # [10.5]] # [[14.5] # [18.5] # [22.5]]] out4 = paddle.mean(x, axis=[0, 2]) # [ 8.5 12.5 16.5] """ if isinstance(axis, Variable): reduce_all = True if axis.shape[0] == len(x.shape) else False else: if isinstance(axis, int): axis = [axis] reduce_all = True if axis is None \ or len(axis)==0 \ or len(axis) == len(x.shape) else False if axis is None or len(axis) == 0: axis = [0] if in_dygraph_mode(): if reduce_all: axis = list(range(len(x.shape))) return _C_ops.mean(x, axis, keepdim) if _in_legacy_dygraph(): return _legacy_C_ops.reduce_mean(x, 'dim', axis, 'keep_dim', keepdim, 'reduce_all', reduce_all) check_variable_and_dtype(x, 'x/input', ['uint16', 'float16', 'float32', 'float64'], 'mean/reduce_mean') check_type(axis, 'axis/dim', (int, list, tuple, Variable), 'mean/reduce_mean') if isinstance(axis, (list, tuple)): for item in axis: check_type(item, 'elements of axis/dim', (int, Variable), 'mean/reduce_mean') helper = LayerHelper('mean', **locals()) if not isinstance(axis, Variable) and utils._contain_var(axis): axis = utils._convert_to_tensor_list(axis) attrs = {'dim': axis, 'keep_dim': keepdim, 'reduce_all': reduce_all} out = helper.create_variable_for_type_inference(x.dtype) helper.append_op(type='reduce_mean', inputs={'X': x}, outputs={'Out': out}, attrs=attrs) return out def var(x, axis=None, unbiased=True, keepdim=False, name=None): """ Computes the variance of ``x`` along ``axis`` . Args: x (Tensor): The input Tensor with data type float32, float64. axis (int|list|tuple, optional): The axis along which to perform variance calculations. ``axis`` should be int, list(int) or tuple(int). - If ``axis`` is a list/tuple of dimension(s), variance is calculated along all element(s) of ``axis`` . ``axis`` or element(s) of ``axis`` should be in range [-D, D), where D is the dimensions of ``x`` . - If ``axis`` or element(s) of ``axis`` is less than 0, it works the same way as :math:`axis + D` . - If ``axis`` is None, variance is calculated over all elements of ``x``. Default is None. unbiased (bool, optional): Whether to use the unbiased estimation. If ``unbiased`` is True, the divisor used in the computation is :math:`N - 1`, where :math:`N` represents the number of elements along ``axis`` , otherwise the divisor is :math:`N`. Default is True. keep_dim (bool, optional): Whether to reserve the reduced dimension in the output Tensor. The result tensor will have one fewer dimension than the input unless keep_dim is true. Default is False. name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`. Returns: Tensor, results of variance along ``axis`` of ``x``, with the same data type as ``x``. Examples: .. code-block:: python import paddle x = paddle.to_tensor([[1.0, 2.0, 3.0], [1.0, 4.0, 5.0]]) out1 = paddle.var(x) # [2.66666667] out2 = paddle.var(x, axis=1) # [1. 4.33333333] """ if not paddle.in_dynamic_mode(): check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'var') u = mean(x, axis, True, name) out = paddle.sum((x - u)**2, axis, keepdim=keepdim, name=name) dtype = x.dtype n = paddle.cast(paddle.numel(x), paddle.int64) \ / paddle.cast(paddle.numel(out), paddle.int64) n = n.astype(dtype) if unbiased: one_const = paddle.ones([1], x.dtype) n = where(n > one_const, n - 1., one_const) out /= n return out def std(x, axis=None, unbiased=True, keepdim=False, name=None): """ Computes the standard-deviation of ``x`` along ``axis`` . Args: x (Tensor): The input Tensor with data type float32, float64. axis (int|list|tuple, optional): The axis along which to perform standard-deviation calculations. ``axis`` should be int, list(int) or tuple(int). If ``axis`` is a list/tuple of dimension(s), standard-deviation is calculated along all element(s) of ``axis`` . ``axis`` or element(s) of ``axis`` should be in range [-D, D), where D is the dimensions of ``x`` . If ``axis`` or element(s) of ``axis`` is less than 0, it works the same way as :math:`axis + D` . If ``axis`` is None, standard-deviation is calculated over all elements of ``x``. Default is None. unbiased (bool, optional): Whether to use the unbiased estimation. If ``unbiased`` is True, the standard-deviation is calculated via the unbiased estimator. If ``unbiased`` is True, the divisor used in the computation is :math:`N - 1`, where :math:`N` represents the number of elements along ``axis`` , otherwise the divisor is :math:`N`. Default is True. keepdim (bool, optional): Whether to reserve the reduced dimension(s) in the output Tensor. If ``keepdim`` is True, the dimensions of the output Tensor is the same as ``x`` except in the reduced dimensions(it is of size 1 in this case). Otherwise, the shape of the output Tensor is squeezed in ``axis`` . Default is False. name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`. Returns: Tensor, results of standard-deviation along ``axis`` of ``x``, with the same data type as ``x``. Examples: .. code-block:: python import paddle x = paddle.to_tensor([[1.0, 2.0, 3.0], [1.0, 4.0, 5.0]]) out1 = paddle.std(x) # [1.63299316] out2 = paddle.std(x, axis=1) # [1. 2.081666] """ if not paddle.in_dynamic_mode(): check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'std') out = var(**locals()) return paddle.sqrt(out) def numel(x, name=None): """ Returns the number of elements for a tensor, which is a int64 Tensor with shape [1] in static mode or a scalar value in imperative mode. Args: x (Tensor): The input Tensor, it's data type can be bool, float16, float32, float64, int32, int64. name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`. Returns: Tensor: The number of elements for the input Tensor. Examples: .. code-block:: python import paddle x = paddle.full(shape=[4, 5, 7], fill_value=0, dtype='int32') numel = paddle.numel(x) # 140 """ if in_dygraph_mode(): return _C_ops.size(x) elif _in_legacy_dygraph(): return _legacy_C_ops.size(x) if not isinstance(x, Variable): raise TypeError("x must be a Tensor in numel") helper = LayerHelper('numel', **locals()) out = helper.create_variable_for_type_inference( dtype=core.VarDesc.VarType.INT64) helper.append_op(type='size', inputs={'Input': x}, outputs={'Out': out}) return out def nanmedian(x, axis=None, keepdim=True, name=None): r""" Compute the median along the specified axis, while ignoring NaNs. If the valid count of elements is a even number, the average value of both elements in the middle is calculated as the median. Args: x (Tensor): The input Tensor, it's data type can be int32, int64, float16, float32, float64. axis (None|int|list|tuple, optional): The axis along which to perform median calculations ``axis`` should be int or list of int. ``axis`` should be in range [-D, D), where D is the dimensions of ``x`` . If ``axis`` is less than 0, it works the same way as :math:`axis + D`. If ``axis`` is None, median is calculated over all elements of ``x``. Default is None. keepdim (bool, optional): Whether to reserve the reduced dimension(s) in the output Tensor. If ``keepdim`` is True, the dimensions of the output Tensor is the same as ``x`` except in the reduced dimensions(it is of size 1 in this case). Otherwise, the shape of the output Tensor is squeezed in ``axis`` . Default is True. name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`. Returns: Tensor, results of median along ``axis`` of ``x``. The output dtype is the same as `x`. Examples: .. code-block:: python import paddle x = paddle.to_tensor([[float('nan'), 2. , 3. ], [0. , 1. , 2. ]]) y1 = x.nanmedian() # y1 is [[2.]] y2 = x.nanmedian(0) # y2 is [[0., 1.5, 2.5]] y3 = x.nanmedian(0, keepdim=False) # y3 is [0., 1.5, 2.5] y4 = x.nanmedian((0, 1)) # y4 is [[2.]] """ if not isinstance(x, Variable): raise TypeError("In median, the input x should be a Tensor.") if isinstance(axis, (list, tuple)) and len(axis) == 0: raise ValueError("Axis list should not be empty.") dims = len(x.shape) if axis is None: axis = [] elif isinstance(axis, tuple): axis = list(axis) elif isinstance(axis, int): axis = [axis] if not isinstance(axis, list): raise ValueError( "Axis should be None, int, or a list, element should in range [-rank(x), rank(x))." ) for i in range(len(axis)): if not isinstance(axis[i], int) or not (axis[i] < dims and axis[i] >= -dims): raise ValueError( "Axis should be None, int, or a list, element should in range [-rank(x), rank(x))." ) if axis[i] < 0: axis[i] += dims if len(axis) != len(set(axis)): raise ValueError("Axis has duplicated elements.") if _in_legacy_dygraph(): median_index, out = _legacy_C_ops.nanmedian(x, 'axis', axis, 'keepdim', keepdim) return out check_variable_and_dtype( x, 'X', ['int32', 'int64', 'float16', 'float32', 'float64'], 'nanmedian') helper = LayerHelper('nanmedian', **locals()) attrs = {'axis': axis, 'keepdim': keepdim} out = helper.create_variable_for_type_inference(x.dtype) medians = helper.create_variable_for_type_inference(x.dtype) helper.append_op(type='nanmedian', inputs={'X': x}, outputs={ 'Out': out, 'MedianIndex': medians }, attrs=attrs) return out def median(x, axis=None, keepdim=False, name=None): """ Compute the median along the specified axis. Args: x (Tensor): The input Tensor, it's data type can be bool, float16, float32, float64, int32, int64. axis (int, optional): The axis along which to perform median calculations ``axis`` should be int. ``axis`` should be in range [-D, D), where D is the dimensions of ``x`` . If ``axis`` is less than 0, it works the same way as :math:`axis + D`. If ``axis`` is None, median is calculated over all elements of ``x``. Default is None. keepdim (bool, optional): Whether to reserve the reduced dimension(s) in the output Tensor. If ``keepdim`` is True, the dimensions of the output Tensor is the same as ``x`` except in the reduced dimensions(it is of size 1 in this case). Otherwise, the shape of the output Tensor is squeezed in ``axis`` . Default is False. name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`. Returns: Tensor, results of median along ``axis`` of ``x``. If data type of ``x`` is float64, data type of results will be float64, otherwise data type will be float32. Examples: .. code-block:: python import paddle x = paddle.arange(12).reshape([3, 4]) # Tensor(shape=[3, 4], dtype=int64, place=Place(cpu), stop_gradient=True, # [[0 , 1 , 2 , 3 ], # [4 , 5 , 6 , 7 ], # [8 , 9 , 10, 11]]) y1 = paddle.median(x) # Tensor(shape=[1], dtype=float32, place=Place(cpu), stop_gradient=True, # [5.50000000]) y2 = paddle.median(x, axis=0) # Tensor(shape=[4], dtype=float32, place=Place(cpu), stop_gradient=True, # [4., 5., 6., 7.]) y3 = paddle.median(x, axis=1) # Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True, # [1.50000000, 5.50000000, 9.50000000]) y4 = paddle.median(x, axis=0, keepdim=True) # Tensor(shape=[1, 4], dtype=float32, place=Place(cpu), stop_gradient=True, # [[4., 5., 6., 7.]]) """ if not isinstance(x, Variable): raise TypeError("In median, the input x should be a Tensor.") is_flatten = axis is None dims = len(x.shape) if is_flatten: x = paddle.flatten(x) axis = 0 else: if not isinstance(axis, int) or not (axis < dims and axis >= -dims): raise ValueError( "In median, axis should be none or an integer in range [-rank(x), rank(x))." ) if axis < 0: axis += dims sz = x.shape[axis] kth = sz >> 1 tensor_topk, idx = paddle.topk(x, kth + 1, axis=axis, largest=False) dtype = 'float64' if x.dtype == core.VarDesc.VarType.FP64 else 'float32' if sz & 1 == 0: out_tensor = paddle.slice( tensor_topk, axes=[axis], starts=[kth - 1], ends=[kth]) + paddle.slice( tensor_topk, axes=[axis], starts=[kth], ends=[kth + 1]) out_tensor = paddle.cast(out_tensor, dtype=dtype) / 2 else: out_tensor = paddle.cast(paddle.slice(tensor_topk, axes=[axis], starts=[kth], ends=[kth + 1]), dtype=dtype) out_tensor = out_tensor + paddle.sum( paddle.cast(paddle.isnan(x), dtype=dtype) * x, axis=axis, keepdim=True) if not keepdim or is_flatten: if not is_flatten: newshape = x.shape[:axis] + x.shape[axis + 1:] elif not keepdim: newshape = [1] else: newshape = [1] * dims else: newshape = out_tensor.shape out_tensor = out_tensor.reshape(newshape, name=name) return out_tensor def _compute_quantile(x, q, axis=None, keepdim=False, ignore_nan=False): """ Compute the quantile of the input along the specified axis. Args: x (Tensor): The input Tensor, it's data type can be float32, float64, int32, int64. q (int|float|list): The q for calculate quantile, which should be in range [0, 1]. If q is a list, each q will be calculated and the first dimension of output is same to the number of ``q`` . axis (int|list, optional): The axis along which to calculate quantile. ``axis`` should be int or list of int. ``axis`` should be in range [-D, D), where D is the dimensions of ``x`` . If ``axis`` is less than 0, it works the same way as :math:`axis + D`. If ``axis`` is a list, quantile is calculated over all elements of given axises. If ``axis`` is None, quantile is calculated over all elements of ``x``. Default is None. keepdim (bool, optional): Whether to reserve the reduced dimension(s) in the output Tensor. If ``keepdim`` is True, the dimensions of the output Tensor is the same as ``x`` except in the reduced dimensions(it is of size 1 in this case). Otherwise, the shape of the output Tensor is squeezed in ``axis`` . Default is False. ignore_nan: (bool, optional): Whether to ignore NaN of input Tensor. If ``ignore_nan`` is True, it will calculate nanquantile. Otherwise it will calculate quantile. Default is False. Returns: Tensor, results of quantile along ``axis`` of ``x``. In order to obtain higher precision, data type of results will be float64. """ # Validate x if not isinstance(x, Variable): raise TypeError("input x should be a Tensor.") # Validate q if isinstance(q, (int, float)): q = [q] elif isinstance(q, (list, tuple)): if len(q) <= 0: raise ValueError("q should not be empty") else: raise TypeError("Type of q should be int, float, list or tuple.") # Validate axis dims = len(x.shape) out_shape = list(x.shape) if axis is None: x = paddle.flatten(x) axis = 0 out_shape = [1] * dims else: if isinstance(axis, list): if len(axis) <= 0: raise ValueError("axis should not be empty") axis_src, axis_dst = [], [] for axis_single in axis: if not isinstance(axis_single, int) or not ( axis_single < dims and axis_single >= -dims): raise ValueError( "Axis should be None, int, or a list, element should in range [-rank(x), rank(x))." ) if axis_single < 0: axis_single = axis_single + dims axis_src.append(axis_single) out_shape[axis_single] = 1 axis_dst = list(range(-len(axis), 0)) x = paddle.moveaxis(x, axis_src, axis_dst) x = paddle.flatten(x, axis_dst[0], axis_dst[-1]) axis = axis_dst[0] else: if not isinstance(axis, int) or not (axis < dims and axis >= -dims): raise ValueError( "Axis should be None, int, or a list, element should in range [-rank(x), rank(x))." ) if axis < 0: axis += dims out_shape[axis] = 1 mask = x.isnan() valid_counts = mask.logical_not().sum(axis=axis, keepdim=True, dtype='float64') indices = [] for q_num in q: if q_num < 0 or q_num > 1: raise ValueError("q should be in range [0, 1]") if paddle.in_dynamic_mode(): q_num = paddle.to_tensor(q_num, dtype='float64') if ignore_nan: indices.append(q_num * (valid_counts - 1)) else: # TODO: Use paddle.index_fill instead of where index = q_num * (valid_counts - 1) last_index = x.shape[axis] - 1 nums = paddle.full_like(index, fill_value=last_index) index = paddle.where(mask.any(axis=axis, keepdim=True), nums, index) indices.append(index) sorted_tensor = paddle.sort(x, axis) outputs = [] # TODO(chenjianye): replace the for-loop to directly take elements. for index in indices: indices_below = paddle.floor(index).astype(paddle.int32) indices_upper = paddle.ceil(index).astype(paddle.int32) tensor_upper = paddle.take_along_axis(sorted_tensor, indices_upper, axis=axis) tensor_below = paddle.take_along_axis(sorted_tensor, indices_below, axis=axis) weights = (index - indices_below.astype('float64')) out = paddle.lerp(tensor_below.astype('float64'), tensor_upper.astype('float64'), weights) if not keepdim: out = paddle.squeeze(out, axis=axis) else: out = out.reshape(out_shape) outputs.append(out) if len(q) > 1: outputs = paddle.stack(outputs, 0) else: outputs = outputs[0] return outputs def quantile(x, q, axis=None, keepdim=False): """ Compute the quantile of the input along the specified axis. If any values in a reduced row are NaN, then the quantiles for that reduction will be NaN. Args: x (Tensor): The input Tensor, it's data type can be float32, float64, int32, int64. q (int|float|list): The q for calculate quantile, which should be in range [0, 1]. If q is a list, each q will be calculated and the first dimension of output is same to the number of ``q`` . axis (int|list, optional): The axis along which to calculate quantile. ``axis`` should be int or list of int. ``axis`` should be in range [-D, D), where D is the dimensions of ``x`` . If ``axis`` is less than 0, it works the same way as :math:`axis + D`. If ``axis`` is a list, quantile is calculated over all elements of given axises. If ``axis`` is None, quantile is calculated over all elements of ``x``. Default is None. keepdim (bool, optional): Whether to reserve the reduced dimension(s) in the output Tensor. If ``keepdim`` is True, the dimensions of the output Tensor is the same as ``x`` except in the reduced dimensions(it is of size 1 in this case). Otherwise, the shape of the output Tensor is squeezed in ``axis`` . Default is False. name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`. Returns: Tensor, results of quantile along ``axis`` of ``x``. In order to obtain higher precision, data type of results will be float64. Examples: .. code-block:: python import paddle y = paddle.arange(0, 8 ,dtype="float32").reshape([4, 2]) # Tensor(shape=[4, 2], dtype=float32, place=Place(cpu), stop_gradient=True, # [[0., 1.], # [2., 3.], # [4., 5.], # [6., 7.]]) y1 = paddle.quantile(y, q=0.5, axis=[0, 1]) # Tensor(shape=[], dtype=float64, place=Place(cpu), stop_gradient=True, # 3.50000000) y2 = paddle.quantile(y, q=0.5, axis=1) # Tensor(shape=[4], dtype=float64, place=Place(cpu), stop_gradient=True, # [0.50000000, 2.50000000, 4.50000000, 6.50000000]) y3 = paddle.quantile(y, q=[0.3, 0.5], axis=0) # Tensor(shape=[2, 2], dtype=float64, place=Place(cpu), stop_gradient=True, # [[1.80000000, 2.80000000], # [3. , 4. ]]) y[0,0] = float("nan") y4 = paddle.quantile(y, q=0.8, axis=1, keepdim=True) # Tensor(shape=[4, 1], dtype=float64, place=Place(cpu), stop_gradient=True, # [[nan ], # [2.80000000], # [4.80000000], # [6.80000000]]) """ return _compute_quantile(x, q, axis=axis, keepdim=keepdim, ignore_nan=False) def nanquantile(x, q, axis=None, keepdim=False): """ Compute the quantile of the input as if NaN values in input did not exist. If all values in a reduced row are NaN, then the quantiles for that reduction will be NaN. Args: x (Tensor): The input Tensor, it's data type can be float32, float64, int32, int64. q (int|float|list): The q for calculate quantile, which should be in range [0, 1]. If q is a list, each q will be calculated and the first dimension of output is same to the number of ``q`` . axis (int|list, optional): The axis along which to calculate quantile. ``axis`` should be int or list of int. ``axis`` should be in range [-D, D), where D is the dimensions of ``x`` . If ``axis`` is less than 0, it works the same way as :math:`axis + D`. If ``axis`` is a list, quantile is calculated over all elements of given axises. If ``axis`` is None, quantile is calculated over all elements of ``x``. Default is None. keepdim (bool, optional): Whether to reserve the reduced dimension(s) in the output Tensor. If ``keepdim`` is True, the dimensions of the output Tensor is the same as ``x`` except in the reduced dimensions(it is of size 1 in this case). Otherwise, the shape of the output Tensor is squeezed in ``axis`` . Default is False. name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`. Returns: Tensor, results of quantile along ``axis`` of ``x``. In order to obtain higher precision, data type of results will be float64. Examples: .. code-block:: python import paddle x = paddle.to_tensor( [[0, 1, 2, 3, 4], [5, 6, 7, 8, 9]], dtype="float32") x[0,0] = float("nan") y1 = paddle.nanquantile(x, q=0.5, axis=[0, 1]) # Tensor(shape=[], dtype=float64, place=Place(cpu), stop_gradient=True, # 5.) y2 = paddle.nanquantile(x, q=0.5, axis=1) # Tensor(shape=[2], dtype=float64, place=Place(cpu), stop_gradient=True, # [2.50000000, 7. ]) y3 = paddle.nanquantile(x, q=[0.3, 0.5], axis=0) # Tensor(shape=[2, 5], dtype=float64, place=Place(cpu), stop_gradient=True, # [[5. , 2.50000000, 3.50000000, 4.50000000, 5.50000000], # [5. , 3.50000000, 4.50000000, 5.50000000, 6.50000000]]) y4 = paddle.nanquantile(x, q=0.8, axis=1, keepdim=True) # Tensor(shape=[2, 1], dtype=float64, place=Place(cpu), stop_gradient=True, # [[3.40000000], # [8.20000000]]) nan = paddle.full(shape=[2, 3], fill_value=float("nan")) y5 = paddle.nanquantile(nan, q=0.8, axis=1, keepdim=True) # Tensor(shape=[2, 1], dtype=float64, place=Place(cpu), stop_gradient=True, # [[nan], # [nan]]) """ return _compute_quantile(x, q, axis=axis, keepdim=keepdim, ignore_nan=True)