# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import unittest import numpy as np import six from op_test import OpTest import paddle.fluid.core as core from paddle.fluid.op import Operator class TestSplitIdsOp(OpTest): def setUp(self): self.op_type = "split_ids" ids = np.array([[0], [2], [2], [3], [5], [5], [6]]).astype('int64') out0 = np.array([[0], [3], [6]]).astype('int64') out1 = np.array([[]]).astype('int64') out2 = np.array([[2], [2], [5], [5]]).astype('int64') self.inputs = {'Ids': ids} self.outputs = {'Out': [('out0', out0), ('out1', out1), ('out2', out2)]} def test_check_output(self): self.check_output() class TestSpliteIds(unittest.TestCase): def get_places(self): places = [core.CPUPlace()] return places def test_check_output(self): for place in self.get_places(): self.check_with_place(place) def check_with_place(self, place): scope = core.Scope() rows = [0, 5, 7, 4, 9] height = 20 row_numel = 2 # initialize input variable X x = scope.var('X').get_selected_rows() x.set_rows(rows) x.set_height(height) np_array = np.ones((len(rows), row_numel)).astype("float32") for i in range(len(rows)): for j in range(row_numel): np_array[i, j] = rows[i] + j x_tensor = x.get_tensor() x_tensor.set(np_array, place) outs_name = ["out%d" % i for i in six.moves.xrange(3)] outs = [ scope.var(var_name).get_selected_rows() for var_name in outs_name ] # expected output selected rows expected_out_rows = [[0, 9], [7, 4], [5]] op = Operator("split_ids", Ids="X", Out=outs_name) for _ in range(3): op.run(scope, place) for i in range(len(outs)): expected_rows = expected_out_rows[i] self.assertEqual(outs[i].rows(), expected_rows) for j in range(len(expected_rows)): row = expected_rows[j] self.assertAlmostEqual( float(row), np.array(outs[i].get_tensor())[j, 0]) self.assertAlmostEqual( float(row + 1), np.array(outs[i].get_tensor())[j, 1]) if __name__ == '__main__': unittest.main()