# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. # #Licensed under the Apache License, Version 2.0 (the "License"); #you may not use this file except in compliance with the License. #You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # #Unless required by applicable law or agreed to in writing, software #distributed under the License is distributed on an "AS IS" BASIS, #WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. #See the License for the specific language governing permissions and #limitations under the License. import unittest import numpy as np import math from op_test import OpTest class TestSequenceReshape(OpTest): def setUp(self): self.op_type = 'sequence_reshape' dimension = 12 x_lod = [[0, 4, 5, 8, 11]] x = np.random.uniform(0.1, 1, [11, 24]).astype('float32') self.inputs = {'X': (x, x_lod)} self.attrs = {'new_dim': dimension} out, out_lod = self.compute_output(x, x_lod, dimension) self.outputs = {'Out': (out, out_lod)} def compute_output(self, x, x_lod, dimension): x_width = x.shape[1] out_lod = [[0]] for i in xrange(len(x_lod[0]) - 1): seq_len = x_lod[0][i + 1] - x_lod[0][i] offset = (seq_len * x_width) / dimension assert int(offset) * dimension == seq_len * x_width out_lod[0].append(out_lod[0][-1] + int(offset)) out = np.zeros(shape=(out_lod[0][-1], dimension)).astype('float32') out.ravel()[:] = x.ravel()[:] return out, out_lod def test_check_output(self): self.check_output() def test_check_grad(self): self.check_grad(["X"], "Out") class TestSequenceReshape_reduce(TestSequenceReshape): def setUp(self): self.op_type = 'sequence_reshape' dimension = 24 x_lod = [[0, 4, 6, 8, 12]] x = np.random.uniform(0.1, 1, [12, 12]).astype('float32') self.inputs = {'X': (x, x_lod)} self.attrs = {'new_dim': dimension} out, out_lod = self.compute_output(x, x_lod, dimension) self.outputs = {'Out': (out, out_lod)} class TestSequenceReshape_same(TestSequenceReshape): def setUp(self): self.op_type = 'sequence_reshape' dimension = 12 x_lod = [[0, 4, 6, 8, 12]] x = np.random.uniform(0.1, 1, [12, 12]).astype('float32') self.inputs = {'X': (x, x_lod)} self.attrs = {'new_dim': dimension} out, out_lod = self.compute_output(x, x_lod, dimension) self.outputs = {'Out': (out, out_lod)} if __name__ == '__main__': unittest.main()