/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include "paddle/fluid/platform/device_context.h" #include #include #include #include #include "paddle/fluid/memory/memory.h" #ifdef PADDLE_WITH_CUDA #include "paddle/fluid/framework/rw_lock.h" #include "paddle/fluid/platform/cuda_device_guard.h" #endif #include "glog/logging.h" namespace paddle { namespace platform { DeviceContextPool* DeviceContextPool::pool = nullptr; platform::DeviceContext* DeviceContextPool::Get(const platform::Place& place) { auto it = device_contexts_.find(place); if (it == device_contexts_.end()) { PADDLE_THROW( "Place %s is not supported, Please re-compile with WITH_GPU " "option", place); } return it->second.get().get(); } template inline void EmplaceDeviceContext( std::map>>* map_ptr, platform::Place p) { using PtrType = std::unique_ptr; map_ptr->emplace(p, std::async(std::launch::deferred, [=] { // lazy evaluation. i.e., only create device context at // first `Get` return PtrType(new DevCtx(boost::get(p))); })); } DeviceContextPool::DeviceContextPool( const std::vector& places) { PADDLE_ENFORCE_GT(places.size(), 0); std::set set; for (auto& p : places) { set.insert(p); } for (auto& p : set) { if (platform::is_cpu_place(p)) { #ifdef PADDLE_WITH_MKLDNN EmplaceDeviceContext(&device_contexts_, p); #else EmplaceDeviceContext(&device_contexts_, p); #endif } else if (platform::is_gpu_place(p)) { #ifdef PADDLE_WITH_CUDA EmplaceDeviceContext(&device_contexts_, p); #else PADDLE_THROW( "'CUDAPlace' is not supported, Please re-compile with WITH_GPU " "option"); #endif } else if (platform::is_cuda_pinned_place(p)) { #ifdef PADDLE_WITH_CUDA EmplaceDeviceContext( &device_contexts_, p); #else PADDLE_THROW( "'CUDAPlace' is not supported, Please re-compile with WITH_GPU " "option"); #endif } } } DeviceTemporaryAllocator* DeviceTemporaryAllocator::allocators = nullptr; #ifdef PADDLE_WITH_CUDA platform::TemporaryAllocator& DeviceTemporaryAllocator::Get( const platform::Place& place, const cudaStream_t& stream) { PADDLE_ENFORCE(platform::is_gpu_place(place)); auto place_stream = std::make_pair(place, stream); std::unique_lock lock(mtx_); auto it = device_allocator_.find(place_stream); if (it == device_allocator_.end()) { auto tmp_allocator = new TemporaryAllocator(place); tmp_allocator->SetCallback([stream]() { PADDLE_ENFORCE(cudaStreamSynchronize(stream)); PADDLE_ENFORCE(cudaGetLastError()); }); device_allocator_[place_stream].reset(tmp_allocator); return *tmp_allocator; } else { return *it->second; } } template <> platform::TemporaryAllocator& DeviceTemporaryAllocator::Get( const platform::CUDADeviceContext& dev_ctx) { return Get(dev_ctx.GetPlace(), dev_ctx.stream()); } #endif template <> platform::TemporaryAllocator& DeviceTemporaryAllocator::Get( const platform::CPUDeviceContext& dev_ctx) { return cpu_allocator_; } platform::TemporaryAllocator& DeviceTemporaryAllocator::Get( const platform::Place& place) { PADDLE_ENFORCE(platform::is_cpu_place(place), "You should pass CPUPlace"); return cpu_allocator_; } CPUDeviceContext::CPUDeviceContext() { eigen_device_.reset(new Eigen::DefaultDevice()); } CPUDeviceContext::CPUDeviceContext(CPUPlace place) : place_(place) { eigen_device_.reset(new Eigen::DefaultDevice()); } Eigen::DefaultDevice* CPUDeviceContext::eigen_device() const { return eigen_device_.get(); } Place CPUDeviceContext::GetPlace() const { return place_; } #ifdef PADDLE_WITH_CUDA class EigenCudaStreamDevice : public Eigen::StreamInterface { public: EigenCudaStreamDevice() : scratch_(nullptr), semaphore_(nullptr) { Eigen::initializeDeviceProp(); } ~EigenCudaStreamDevice() override {} void Reinitialize(const cudaStream_t* cuda_stream, CUDAPlace place) { stream_ = cuda_stream; place_ = place; device_prop_ = &Eigen::m_deviceProperties[place.device]; } const cudaStream_t& stream() const override { return *stream_; } const cudaDeviceProp& deviceProperties() const override { return *device_prop_; } void* allocate(size_t num_bytes) const override { if (UNLIKELY(num_bytes == 0)) { return nullptr; } auto buf = paddle::memory::Alloc(place_, num_bytes); void* retv = buf->ptr(); { std::lock_guard lock(mtx_); allocations_.emplace(retv, std::move(buf)); } return retv; } void deallocate(void* buffer) const override { if (LIKELY(buffer)) { std::lock_guard lock(mtx_); allocations_.erase(buffer); } } void* scratchpad() const override { if (scratch_ == NULL) { scratch_ = allocate(Eigen::kCudaScratchSize + sizeof(unsigned int)); } return scratch_; } unsigned int* semaphore() const override { if (semaphore_ == NULL) { char* scratch = static_cast(scratchpad()) + Eigen::kCudaScratchSize; semaphore_ = reinterpret_cast(scratch); PADDLE_ENFORCE( cudaMemsetAsync(semaphore_, 0, sizeof(unsigned int), *stream_)); } return semaphore_; } private: CUDAPlace place_; const cudaStream_t* stream_; // not owned; const cudaDeviceProp* device_prop_; // not owned; mutable void* scratch_; mutable unsigned int* semaphore_; mutable std::mutex mtx_; // to protect allocations_ mutable std::unordered_map allocations_; }; CudnnHolder::CudnnHolder(const cudaStream_t* stream, const CUDAPlace& place) : workspace_(nullptr), stream_(stream), place_(place) { PADDLE_ENFORCE(cudaSetDevice(place_.device)); PADDLE_ENFORCE(dynload::cudnnCreate(&cudnn_handle_)); PADDLE_ENFORCE(dynload::cudnnSetStream(cudnn_handle_, *stream_)); } CudnnHolder::~CudnnHolder() { PADDLE_ENFORCE(dynload::cudnnDestroy(cudnn_handle_)); } void CudnnHolder::ReallocateWorkspace(size_t required_workspace_len) { if (required_workspace_len <= WorkspaceSize()) { return; } if (workspace_ != nullptr) { // Maybe someone is using the current workspace PADDLE_ENFORCE(cudaStreamSynchronize(*stream_)); workspace_.reset(); } workspace_ = paddle::memory::Alloc(place_, required_workspace_len); } CUDADeviceContext::CUDADeviceContext(CUDAPlace place) : place_(place), cudnn_holder_(nullptr) { CUDADeviceGuard guard(place_.device); compute_capability_ = GetCUDAComputeCapability(place_.device); multi_process_ = GetCUDAMultiProcessors(place_.device); max_threads_per_mp_ = GetCUDAMaxThreadsPerMultiProcessor(place_.device); PADDLE_ENFORCE(cudaStreamCreate(&stream_)); eigen_stream_.reset(new EigenCudaStreamDevice()); eigen_stream_->Reinitialize(&stream_, place); eigen_device_.reset(new Eigen::GpuDevice(eigen_stream_.get())); cublas_handle_.reset(new CublasHandleHolder(stream_, CUBLAS_DEFAULT_MATH)); if (TensorCoreAvailable()) { #if CUDA_VERSION >= 9000 cublas_tensor_core_handle_.reset( new CublasHandleHolder(stream_, CUBLAS_TENSOR_OP_MATH)); #endif } driver_version_ = GetCUDADriverVersion(place_.device); runtime_version_ = GetCUDARuntimeVersion(place_.device); LOG_FIRST_N(WARNING, 1) << "Please NOTE: device: " << place_.device << ", CUDA Capability: " << compute_capability_ << ", Driver API Version: " << driver_version_ / 1000 << "." << (driver_version_ % 100) / 10 << ", Runtime API Version: " << runtime_version_ / 1000 << "." << (runtime_version_ % 100) / 10; size_t cudnn_dso_ver = dynload::cudnnGetVersion(); LOG_FIRST_N(WARNING, 1) << "device: " << place_.device << ", cuDNN Version: " << cudnn_dso_ver / 1000 << "." << (cudnn_dso_ver % 1000) / 100 << "."; { // Check CUDA/CUDNN version compatiblity auto local_cuda_version = (driver_version_ / 1000) * 10 + (driver_version_ % 100) / 10; auto compile_cuda_version = (CUDA_VERSION / 1000) * 10 + (CUDA_VERSION % 100) / 10; if (local_cuda_version < compile_cuda_version) { LOG_FIRST_N(WARNING, 1) << "WARNING: device: " << place_.device << ". The installed Paddle is compiled with CUDA " << compile_cuda_version / 10 << "." << compile_cuda_version % 10 << ", but CUDA runtime version in your machine is " << local_cuda_version / 10 << "." << local_cuda_version % 10 << ", which may cause serious incompatible bug. " << "Please recompile or reinstall Paddle with compatible CUDA " "version."; } if (dynload::HasCUDNN()) { auto local_cudnn_version = cudnn_dso_ver / 100; auto compile_cudnn_version = CUDNN_VERSION / 100; if (local_cudnn_version < static_cast(compile_cudnn_version)) { LOG_FIRST_N(WARNING, 1) << "WARNING: device: " << place_.device << ". The installed Paddle is compiled with CUDNN " << compile_cudnn_version / 10 << "." << compile_cudnn_version % 10 << ", but CUDNN version in your machine is " << local_cudnn_version / 10 << "." << local_cudnn_version % 10 << ", which may cause serious incompatible bug. " << "Please recompile or reinstall Paddle with compatible CUDNN " "version."; } } } callback_manager_.reset(new StreamCallbackManager(stream_)); } CUDADeviceContext::~CUDADeviceContext() { SetDeviceId(place_.device); Wait(); WaitStreamCallback(); cublas_handle_.reset(); cublas_tensor_core_handle_.reset(); eigen_stream_.reset(); eigen_device_.reset(); PADDLE_ENFORCE(cudaStreamDestroy(stream_)); #if !defined(_WIN32) if (nccl_comm_) { PADDLE_ENFORCE(dynload::ncclCommDestroy(nccl_comm_)); } #endif } Place CUDADeviceContext::GetPlace() const { return place_; } void CUDADeviceContext::Wait() const { auto& allocator = DeviceTemporaryAllocator::Instance().Get(*this); allocator.Release([this]() { cudaError_t e_sync = cudaStreamSynchronize(stream_); if (e_sync != 0) { LOG(FATAL) << "cudaStreamSynchronize " << cudaGetErrorString(e_sync) << " errno:" << e_sync; } cudaError_t e_get = cudaGetLastError(); if (e_get != 0) { LOG(FATAL) << "cudaGetLastError " << cudaGetErrorString(e_get) << " errno:" << e_get; } }); } int CUDADeviceContext::GetComputeCapability() const { return compute_capability_; } int CUDADeviceContext::GetMaxPhysicalThreadCount() const { return multi_process_ * max_threads_per_mp_; } Eigen::GpuDevice* CUDADeviceContext::eigen_device() const { return eigen_device_.get(); } bool CUDADeviceContext::tensor_core_available() const { return cublas_tensor_core_handle_ != nullptr; } CudnnHolder* CUDADeviceContext::cudnn_holder() const { std::call_once(init_cudnn_, [&]() { if (dynload::HasCUDNN()) { cudnn_holder_.reset(new CudnnHolder(&stream_, place_)); } }); return cudnn_holder_.get(); } cudnnHandle_t CUDADeviceContext::cudnn_handle() const { return cudnn_holder()->cudnn_handle(); } CudnnWorkspaceHandle CUDADeviceContext::cudnn_workspace_handle() const { return CudnnWorkspaceHandle(cudnn_holder()); } cudaStream_t CUDADeviceContext::stream() const { return stream_; } CUDAPinnedDeviceContext::CUDAPinnedDeviceContext() { eigen_device_.reset(new Eigen::DefaultDevice()); } CUDAPinnedDeviceContext::CUDAPinnedDeviceContext(CUDAPinnedPlace place) : place_(place) { eigen_device_.reset(new Eigen::DefaultDevice()); } Eigen::DefaultDevice* CUDAPinnedDeviceContext::eigen_device() const { return eigen_device_.get(); } Place CUDAPinnedDeviceContext::GetPlace() const { return place_; } #endif #ifdef PADDLE_WITH_MKLDNN MKLDNNDeviceContext::MKLDNNDeviceContext(CPUPlace place) : CPUDeviceContext(place), engine_(mkldnn::engine::cpu, 0), p_blobmap_() { p_blobmap_.reset(new BlobMap()); p_mutex_.reset(new std::mutex()); } namespace { // Current mkldnn session id. thread_local size_t cur_mkldnn_session_id = kMKLDNNSessionID_Default; // Current data input shape string. // - For fixed-shape, it's a null string in default. // - For dynamic-shape, it's user specific. thread_local std::string cur_input_shape_str = ""; // the cache capacity of different input shapes for MKLDNN. // Default 1 means fixed input shape, not dynamic shape. thread_local int cur_input_shape_cache_capacity = 1; } // namespace void set_cur_mkldnn_session_id(size_t sid) { cur_mkldnn_session_id = sid; } size_t get_cur_mkldnn_session_id(void) { return cur_mkldnn_session_id; } void set_cur_input_shape_str(std::string input_shape_str) { cur_input_shape_str = input_shape_str; } void set_cur_input_shape_cache_capacity(int input_shape_cache_capacity) { cur_input_shape_cache_capacity = input_shape_cache_capacity; } void MKLDNNDeviceContext::ResetBlobMap() const { p_blobmap_->clear(); } size_t MKLDNNDeviceContext::GetShapeBlobSize() const { std::lock_guard lock(*p_mutex_); BlobMap* pMap = p_blobmap_.get(); auto map_it = pMap->find(cur_mkldnn_session_id); if (map_it == pMap->end()) { LOG(FATAL) << "MKLDNNDeviceContext don't find cur_mkldnn_session_id : " << cur_mkldnn_session_id; } return map_it->second->size(); } void MKLDNNDeviceContext::SetBlob(const std::string& name, std::shared_ptr data) const { BlobMap* pMap = p_blobmap_.get(); std::shared_ptr sBlob = nullptr; std::shared_ptr pBlob = nullptr; int sid = platform::get_cur_mkldnn_session_id(); std::lock_guard lock(*p_mutex_); // Find ShapeBlob for current mkldnn session id. auto map_it = pMap->find(sid); if (map_it == pMap->end()) { // 1st time to set blob in current thread sBlob = std::shared_ptr(new ShapeBlob()); (*pMap)[sid] = sBlob; VLOG(2) << "SetBlob: sid=" << sid << ", add new sid\n"; } else { sBlob = map_it->second; } // Find KeyBlob for current input shape auto key_it = sBlob->find(cur_input_shape_str); if (key_it == sBlob->end()) { // In cache clearing mode, cur_input_shape_cache_capacity defines // max pblob capacity if ((static_cast(sid) == kMKLDNNSessionID_CacheClearing) && sBlob->size() && (sBlob->size() >= static_cast(cur_input_shape_cache_capacity))) { VLOG(2) << "sid=" << sid << ", remove all blobs of shape: " << sBlob->begin()->first; sBlob->erase(sBlob->begin()->first); } pBlob = std::shared_ptr(new KeyBlob()); (*sBlob)[cur_input_shape_str] = pBlob; } else { pBlob = key_it->second; } // Find Blob via name auto blob_it = pBlob->find(name); if (blob_it == pBlob->end()) { (*pBlob)[name] = data; } else { blob_it->second = data; // set data to existing blob } VLOG(2) << "SetBlob: sid=" << sid << ", add blob=" << name << "\n"; // lock will be automatically released when out of scope return; } std::shared_ptr MKLDNNDeviceContext::GetBlob( const std::string& name) const { BlobMap* pMap = p_blobmap_.get(); std::shared_ptr sBlob = nullptr; std::shared_ptr pBlob = nullptr; int sid = platform::get_cur_mkldnn_session_id(); std::lock_guard lock(*p_mutex_); // Find ShapeBlob for current mkldnn session id firstly auto map_it = pMap->find(sid); if (map_it == pMap->end()) { VLOG(2) << "GetBlob: sid=" << sid << ", miss sid\n"; return nullptr; } sBlob = map_it->second; // Find KeyBlob for current input shape secondly auto sBlob_it = sBlob->find(cur_input_shape_str); if (sBlob_it == sBlob->end()) { VLOG(2) << "GetBlob: sid=" << cur_input_shape_str << ", miss input_shape_str\n"; return nullptr; } pBlob = sBlob_it->second; // Find Blob via name auto key_it = pBlob->find(name); if (key_it == pBlob->end()) { VLOG(2) << "GetBlob sid=" << sid << ", miss blob=" << name << "\n"; return nullptr; } VLOG(2) << "GetBlob sid=" << sid << ", get blob=" << name << "\n"; // lock will be automatically released when out of scope return key_it->second; } #endif } // namespace platform } // namespace paddle