// Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/phi/kernels/set_value_grad_kernel.h" #include "paddle/phi/backends/xpu/enforce_xpu.h" #include "paddle/phi/backends/xpu/xpu_context.h" #include "paddle/phi/core/kernel_registry.h" #include "paddle/phi/common/int_array.h" #include "paddle/phi/core/dense_tensor.h" #include "paddle/phi/core/tensor_utils.h" #include "paddle/phi/kernels/full_kernel.h" #include "paddle/phi/kernels/funcs/eigen/common.h" #include "paddle/phi/kernels/funcs/math_function.h" #include "paddle/phi/kernels/funcs/strided_slice.h" namespace phi { inline void GetOffsets(const DDim& big_dim, const DDim& small_dim, DDim start_offset, int cur_dim, std::vector* offsets) { if (cur_dim == big_dim.size()) { offsets->push_back(start_offset); return; } if (small_dim[cur_dim] == big_dim[cur_dim]) { GetOffsets(big_dim, small_dim, start_offset, cur_dim + 1, offsets); } else { for (int i = 0; i < big_dim[cur_dim]; i++) { GetOffsets(big_dim, small_dim, start_offset, cur_dim + 1, offsets); start_offset[cur_dim] += 1; } } } template void SetValueGradImpl(const Context& dev_ctx, const DenseTensor& out_grad, const IntArray& starts, const IntArray& ends, const IntArray& steps, const std::vector& axes, const std::vector& decrease_axes, const std::vector& none_axes, DenseTensor* x_grad, DenseTensor* value_grad) { using XPUType = typename XPUTypeTrait::Type; PADDLE_ENFORCE_EQ( out_grad.IsInitialized(), true, errors::PermissionDenied( "The input of `set_value_grad`(out_grad) has not been initialized")); auto in_dims = out_grad.dims(); auto in_dims_vector = phi::vectorize(in_dims); std::vector decrease_axis_int32(decrease_axes.begin(), decrease_axes.end()); std::vector axes_int32(axes.begin(), axes.end()); std::vector infer_flags(axes.size(), 1); std::vector out_dims_vector(in_dims.size(), -1); std::vector starts_local = starts.GetData(); std::vector ends_local = ends.GetData(); std::vector steps_local = steps.GetData(); funcs::StridedSliceOutDims(starts_local, ends_local, steps_local, axes_int32, infer_flags, in_dims, decrease_axis_int32, out_dims_vector.data(), axes.size(), false); DDim out_dims(phi::make_ddim(out_dims_vector)); std::vector reverse_vector(starts_local.size(), 0); funcs::StridedSliceFunctor(starts_local.data(), ends_local.data(), steps_local.data(), axes_int32.data(), reverse_vector.data(), in_dims, infer_flags, decrease_axis_int32, starts_local.size()); std::vector starts_indices(RANK, 0); std::vector ends_indices(RANK, 0); std::vector steps_indices(RANK, 0); std::vector reverse_axis(RANK, 0); std::vector flip_axis; for (size_t axis = 0; axis < RANK; axis++) { starts_indices[axis] = 0; ends_indices[axis] = out_dims[axis]; steps_indices[axis] = 1; reverse_axis[axis] = false; } for (size_t axis = 0; axis < axes.size(); axis++) { int axis_index = axes[axis]; starts_indices[axis_index] = starts_local[axis]; ends_indices[axis_index] = ends_local[axis]; steps_indices[axis_index] = steps_local[axis]; reverse_axis[axis_index] = (reverse_vector[axis] == 1) ? true : false; } for (size_t axis = 0; axis < RANK; axis++) { if (reverse_axis[axis]) { flip_axis.push_back(axis); } if (ends_indices[axis] > in_dims[axis]) { ends_indices[axis] = in_dims[axis]; } } bool need_reverse = false; for (size_t axis = 0; axis < axes.size(); axis++) { if (reverse_vector[axis] == 1) { need_reverse = true; break; } } phi::funcs::SetConstant set_zero; int r = XPU_SUCCESS; if (x_grad) { // Set gradient of `Input` x_grad->Resize(out_grad.dims()); dev_ctx.template Alloc(x_grad); r = xpu::copy(dev_ctx.x_context(), reinterpret_cast(out_grad.data()), reinterpret_cast(x_grad->data()), out_grad.numel()); PADDLE_ENFORCE_XDNN_SUCCESS(r, "copy"); DenseTensor tmp = Full(dev_ctx, out_dims_vector, static_cast(0)); r = xpu::strided_slice_view_update( dev_ctx.x_context(), reinterpret_cast(tmp.data()), reinterpret_cast(x_grad->data()), out_dims_vector, phi::vectorize(x_grad->dims()), starts_indices, ends_indices, steps_indices); PADDLE_ENFORCE_XDNN_SUCCESS(r, "strided_slice_view_update"); } if (value_grad) { dev_ctx.template Alloc(value_grad); set_zero(dev_ctx, value_grad, static_cast(0)); if (value_grad->dims() == out_dims) { if (need_reverse) { r = xpu::strided_slice( dev_ctx.x_context(), reinterpret_cast(out_grad.data()), reinterpret_cast(value_grad->data()), in_dims_vector, starts_indices, ends_indices, steps_indices); PADDLE_ENFORCE_XDNN_SUCCESS(r, "strided_slice"); r = xpu::flip(dev_ctx.x_context(), reinterpret_cast(value_grad->data()), reinterpret_cast(value_grad->data()), out_dims_vector, flip_axis); PADDLE_ENFORCE_XDNN_SUCCESS(r, "flip"); } else { r = xpu::strided_slice( dev_ctx.x_context(), reinterpret_cast(out_grad.data()), reinterpret_cast(value_grad->data()), in_dims_vector, starts_indices, ends_indices, steps_indices); PADDLE_ENFORCE_XDNN_SUCCESS(r, "strided_slice"); } } else { int out_dims_size = out_dims.size(); auto value_grad_dims = value_grad->dims(); auto fake_value_grad_dims = out_dims; // Create an extented shape according to the rules of broadcast. auto value_grad_dims_size = value_grad_dims.size(); int num_decrease = 0; int decrease_axis_size = decrease_axes.size(); for (int i = 0; i < out_dims_size; i++) { if (decrease_axes.end() != std::find(decrease_axes.begin(), decrease_axes.end(), i)) { fake_value_grad_dims[i] = 1; num_decrease++; } else if (i < out_dims_size - (value_grad_dims_size + decrease_axis_size - num_decrease)) { fake_value_grad_dims[i] = 1; } else { auto index_grad = i - (out_dims_size - (value_grad_dims_size + decrease_axis_size - num_decrease)); fake_value_grad_dims[i] = value_grad_dims[index_grad]; PADDLE_ENFORCE_EQ( (out_dims[i] == value_grad_dims[index_grad]) || (value_grad_dims[index_grad] == 1), true, errors::InvalidArgument("An error occurred while calculating %s: " "[%s] can not be accumulated into [%s].", "ValueTensor@GRAD", out_dims, value_grad_dims)); } } VLOG(3) << "Dimensions of " << "ValueTensor@GRAD" << "([" << value_grad_dims << "])is broadcasted into [" << fake_value_grad_dims << "]."; std::vector slice_end(RANK, 0); auto offset = out_dims; for (int i = 0; i < out_dims_size; i++) { offset[i] = 0; } std::vector offsets; GetOffsets(out_dims, fake_value_grad_dims, offset, 0, &offsets); DenseTensor tmp = Full(dev_ctx, out_dims_vector, static_cast(0)); r = xpu::strided_slice( dev_ctx.x_context(), reinterpret_cast(out_grad.data()), reinterpret_cast(tmp.data()), in_dims_vector, starts_indices, ends_indices, steps_indices); PADDLE_ENFORCE_XDNN_SUCCESS(r, "strided_slice"); // accumulate gradient DenseTensor tmp2 = Full(dev_ctx, {fake_value_grad_dims.Get(), fake_value_grad_dims.size()}, static_cast(0)); auto value_grad_dims_vec = phi::vectorize(value_grad_dims); for (auto offset : offsets) { for (int i = 0; i < out_dims_size; i++) { slice_end[i] = offset[i] + fake_value_grad_dims[i]; } r = xpu::slice(dev_ctx.x_context(), reinterpret_cast(tmp.data()), reinterpret_cast(tmp2.data()), out_dims_vector, phi::vectorize(offset), slice_end); PADDLE_ENFORCE_XDNN_SUCCESS(r, "slice"); r = xpu::broadcast_add( dev_ctx.x_context(), reinterpret_cast(value_grad->data()), reinterpret_cast(tmp2.data()), reinterpret_cast(value_grad->data()), value_grad_dims_vec, value_grad_dims_vec); PADDLE_ENFORCE_XDNN_SUCCESS(r, "broadcast_add"); } if (need_reverse) { r = xpu::flip(dev_ctx.x_context(), reinterpret_cast(value_grad->data()), reinterpret_cast(value_grad->data()), value_grad_dims_vec, flip_axis); PADDLE_ENFORCE_XDNN_SUCCESS(r, "flip"); } } } } template void SetValueGradKernel(const Context& dev_ctx, const DenseTensor& out_grad, const IntArray& starts, const IntArray& ends, const IntArray& steps, const std::vector& axes, const std::vector& decrease_axes, const std::vector& none_axes, DenseTensor* x_grad, DenseTensor* value_grad) { const int rank = out_grad.dims().size(); switch (rank) { case 1: SetValueGradImpl(dev_ctx, out_grad, starts, ends, steps, axes, decrease_axes, none_axes, x_grad, value_grad); break; case 2: SetValueGradImpl(dev_ctx, out_grad, starts, ends, steps, axes, decrease_axes, none_axes, x_grad, value_grad); break; case 3: SetValueGradImpl(dev_ctx, out_grad, starts, ends, steps, axes, decrease_axes, none_axes, x_grad, value_grad); break; case 4: SetValueGradImpl(dev_ctx, out_grad, starts, ends, steps, axes, decrease_axes, none_axes, x_grad, value_grad); break; case 5: SetValueGradImpl(dev_ctx, out_grad, starts, ends, steps, axes, decrease_axes, none_axes, x_grad, value_grad); break; case 6: SetValueGradImpl(dev_ctx, out_grad, starts, ends, steps, axes, decrease_axes, none_axes, x_grad, value_grad); break; default: PADDLE_THROW(phi::errors::InvalidArgument( "The rank of set_value_grad's input should be less than 7, but " "received %d.", rank)); } } } // namespace phi PD_REGISTER_KERNEL(set_value_grad, XPU, ALL_LAYOUT, phi::SetValueGradKernel, float, phi::dtype::float16, int, int64_t) {}