/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #pragma once #include "paddle/phi/backends/gpu/gpu_helper.h" #include "paddle/phi/backends/gpu/gpu_info.h" #include "paddle/phi/backends/gpu/gpu_launch_config.h" #include "paddle/phi/common/pstring.h" #include "paddle/phi/core/dense_tensor.h" #include "paddle/phi/core/string_tensor.h" namespace phi { namespace strings { #if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP) __global__ void SerializeStringsData(const phi::dtype::pstring* src_str, uint8_t* strings_data, int32_t* strings_offset, int64_t numel, int32_t start_offset) { if (threadIdx.x == 0 && blockIdx.x == 0) { strings_offset[0] = start_offset; for (int64_t i = 1; i <= numel; ++i) { strings_offset[i] = strings_offset[i - 1] + src_str[i - 1].length() + 1; } } __syncthreads(); CUDA_KERNEL_LOOP(i, numel) { memcpy(strings_data + strings_offset[i], src_str[i].data(), src_str[i].length() + 1); } } __global__ void SumStringsLen(const phi::dtype::pstring* src_ptr, int64_t numel, int* num) { extern __shared__ int counter[]; int thread_counter = 0; CUDA_KERNEL_LOOP(i, numel) { thread_counter += src_ptr[i].length() + 1; } counter[threadIdx.x] = thread_counter; __syncthreads(); if (threadIdx.x == 0) { int block_counter = 0; for (int i = 0; i < blockDim.x; ++i) { block_counter += counter[i]; } atomicAdd(num, block_counter); } } template int GetAllStringsSize(const Context& dev_ctx, const phi::dtype::pstring* src_ptr, size_t numel) { auto nums_meta = phi::DenseTensorMeta(DataType::INT32, {1}, phi::DataLayout::NCHW); DenseTensor nums_tensor = phi::Empty(dev_ctx, std::move(nums_meta)); int* nums_ptr = dev_ctx.template Alloc(&nums_tensor); phi::backends::gpu::GpuMemsetAsync( nums_ptr, 0, sizeof(int), dev_ctx.stream()); dim3 block_size = dim3(PREDEFINED_BLOCK_SIZE, 1); dim3 grid_size = dim3((numel + PREDEFINED_BLOCK_SIZE - 1) / PREDEFINED_BLOCK_SIZE, 1); SumStringsLen<<>>(src_ptr, numel, nums_ptr); int num = -1; #ifdef PADDLE_WITH_HIP phi::backends::gpu::GpuMemcpyAsync( &num, nums_ptr, sizeof(int), hipMemcpyDeviceToHost, dev_ctx.stream()); #else phi::backends::gpu::GpuMemcpyAsync( &num, nums_ptr, sizeof(int), cudaMemcpyDeviceToHost, dev_ctx.stream()); #endif return num; } __global__ void DeserializeCUDAKernel(const char* strings_data, const int* strings_offset, phi::dtype::pstring* dst_str, int numel) { CUDA_KERNEL_LOOP(i, numel) { // -1 not include '\0' auto len = strings_offset[i + 1] - strings_offset[i] - 1; dst_str[i] = phi::dtype::pstring(strings_data + strings_offset[i], len); } } #endif template void SerializeOnCPU(const Context& dev_ctx, const StringTensor& src, DenseTensor* dst) { int64_t numel = src.numel(); int64_t num = sizeof(int) * (numel + 1); auto* src_str = src.data(); for (int64_t i = 0; i < numel; ++i) { num += src_str[i].length() + 1; } dst->Resize(phi::make_ddim({num})); uint8_t* strings_data = dev_ctx.template HostAlloc(dst); auto* strings_offset = reinterpret_cast(strings_data); int start_offset = sizeof(int) * (numel + 1); for (int64_t i = 0; i <= numel; ++i) { if (i == 0) { strings_offset[i] = start_offset; } else { strings_offset[i] = strings_offset[i - 1] + src_str[i - 1].length() + 1; } } for (int64_t i = 0; i < numel; ++i) { memcpy(strings_data + strings_offset[i], src_str[i].data(), src_str[i].length() + 1); } } template void DeserializeOnCPU(const Context& dev_ctx, const DenseTensor& src, StringTensor* dst) { auto* strings_data = reinterpret_cast(src.data()); auto* strings_offset = reinterpret_cast(strings_data); int numel = strings_offset[0] / sizeof(int) - 1; dst->Resize(phi::make_ddim({numel})); dtype::pstring* dst_str = dev_ctx.template HostAlloc(dst); for (int i = 0; i < numel; ++i) { // -1 not include '\0' auto len = strings_offset[i + 1] - strings_offset[i] - 1; dst_str[i] = phi::dtype::pstring(strings_data + strings_offset[i], len); } } #if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP) void SerializeOnGPU(const phi::GPUContext& dev_ctx, const StringTensor& src, DenseTensor* dst) { int64_t numel = src.numel(); auto* src_str = src.data(); // 1.get the number of bytes of all strings in string tensor auto strings_size = GetAllStringsSize(dev_ctx, src_str, numel); strings_size += sizeof(int32_t) * (numel + 1); dst->Resize(phi::make_ddim({strings_size})); uint8_t* strings_data = dev_ctx.template Alloc(dst); auto* strings_offset = reinterpret_cast(strings_data); int32_t start_offset = sizeof(int32_t) * (numel + 1); // 2. serialize strings data to dense tensor dim3 block_size = dim3(PREDEFINED_BLOCK_SIZE, 1); dim3 grid_size = dim3((numel + PREDEFINED_BLOCK_SIZE - 1) / PREDEFINED_BLOCK_SIZE, 1); SerializeStringsData<<>>( src_str, strings_data, strings_offset, numel, start_offset); } void DeserializeOnGPU(const phi::GPUContext& dev_ctx, const DenseTensor& src, StringTensor* dst) { auto* strings_data = reinterpret_cast(src.data()); auto* strings_offset = reinterpret_cast(strings_data); int numel = 0; #ifdef PADDLE_WITH_HIP phi::backends::gpu::GpuMemcpySync( &numel, strings_data, sizeof(numel), hipMemcpyDeviceToHost); #else phi::backends::gpu::GpuMemcpySync( &numel, strings_data, sizeof(numel), cudaMemcpyDeviceToHost); #endif numel = numel / sizeof(int) - 1; dst->Resize(phi::make_ddim({numel})); dtype::pstring* dst_str = dev_ctx.template Alloc(dst); dim3 block_size = dim3(PREDEFINED_BLOCK_SIZE, 1); dim3 grid_size = dim3((numel + PREDEFINED_BLOCK_SIZE - 1) / PREDEFINED_BLOCK_SIZE, 1); DeserializeCUDAKernel<<>>( strings_data, strings_offset, dst_str, numel); } #endif } // namespace strings } // namespace phi