/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include #include "ParamUtil.h" #include "Trainer.h" #include "paddle/pserver/ParameterServer2.h" #include "paddle/utils/PythonUtil.h" P_DEFINE_string(model_dir, "", "Directory for separated model files"); P_DEFINE_string(model_file, "", "File for merged model file"); using namespace paddle; // NOLINT using namespace std; // NOLINT int main(int argc, char** argv) { initMain(argc, argv); initPython(argc, argv); string confFile = TrainerConfigHelper::getConfigNameFromPath(FLAGS_model_dir); #ifdef PADDLE_ONLY_CPU FLAGS_use_gpu = false; #endif auto config = std::make_shared(confFile); unique_ptr gradientMachine(GradientMachine::create(*config)); gradientMachine->loadParameters(FLAGS_model_dir); ofstream os(FLAGS_model_file); string buf; config->getConfig().SerializeToString(&buf); int64_t size = buf.size(); os.write((char*)&size, sizeof(size)); CHECK(os) << "Fail to write to " << FLAGS_model_file; os.write(buf.data(), buf.size()); vector& parameters = gradientMachine->getParameters(); for (auto& para : parameters) { para->save(os); CHECK(os) << "Fail to write to " << FLAGS_model_file; } os.close(); return 0; }