# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np import paddle import paddle.nn.functional as F from paddle import fluid, static from paddle.fluid import backward class BackwardNet: """ Abstract Base Class. All Net inherited this Class should implement two functions: build_model: build net to test the logic of backward init_data: fake input data to test all programs. """ def __init__(self): self.stop_gradient_grad_vars = set() self.no_grad_vars = set() self.params_names = set() self.op_path = [] def build_model(self): """ Build net to test the logic of backward. :return: loss """ raise NotImplementedError def init_data(self): """ Fake input data to test all programs. :return: dict, {'var_name': var_data} """ raise NotImplementedError class TestBackward(unittest.TestCase): """ All related TestClass should inherit this class, and only implement test_backward function. """ def _check_all(self, net): place = ( fluid.CUDAPlace(0) if fluid.core.is_compiled_with_cuda() else fluid.CPUPlace() ) exe = fluid.Executor(place) main = fluid.Program() startup = fluid.Program() with fluid.program_guard(main, startup): loss = net.build_model() self._check_backward(loss, main) optimizer = fluid.optimizer.SGD(learning_rate=0.1) optimizer.minimize(loss) exe.run(startup) exe.run(feed=net.init_data()) def _check_backward(self, loss, main_program): global_block_idx = self.global_block_idx params_grads = self._check_params_grad(loss) # 1.1 get_stop_gradients no_grad_dict = self._check_stop_gradient(main_program) # 1.2 find_op_path op_path, block_no_grad_set = self._check_op_path( main_program.block(global_block_idx), [loss], [], no_grad_dict ) # 1.3 _find_no_grad_vars no_grad_vars = self._check_find_no_grad_vars( main_program.block(global_block_idx), op_path, [loss], block_no_grad_set, ) # update no_grad_dict block_no_grad_set.update(no_grad_vars) no_grad_dict[global_block_idx].update( list(map(fluid.backward._append_grad_suffix_, block_no_grad_set)) ) def _check_params_grad(self, loss, parameter_list=None, no_grad_set=None): params_grads = fluid.backward.append_backward( loss, parameter_list, no_grad_set ) params_names = { param_var.name for (param_var, grad_var) in params_grads } self.assertSetEqual(params_names, self.net.params_names) return params_grads def _check_stop_gradient(self, program): no_grad_dict = fluid.backward._get_stop_gradients_(program) if no_grad_dict is not None and isinstance(no_grad_dict, dict): self.assertSetEqual( no_grad_dict[self.global_block_idx], self.net.stop_gradient_grad_vars, ) return no_grad_dict def _check_op_path(self, root_block, outputs, inputs=[], no_grad_dict=None): if no_grad_dict is None or not isinstance(no_grad_dict, dict): block_no_grad_set = None else: block_no_grad_set = set( map( fluid.backward._strip_grad_suffix_, no_grad_dict[self.global_block_idx], ) ) op_path = fluid.backward._find_op_path_( root_block, outputs, inputs, block_no_grad_set ) op_types = [op.type for op in op_path] self.assertListEqual(op_types, self.net.op_path) return op_path, block_no_grad_set def _check_find_no_grad_vars( self, root_block, op_path, targets, block_no_grad_set ): no_grad_vars = fluid.backward._find_no_grad_vars( root_block, op_path, targets, block_no_grad_set ) self.assertSetEqual(no_grad_vars, self.net.no_grad_vars) return no_grad_vars def _check_error_param_list(self, net, parameter_list): place = ( fluid.CUDAPlace(0) if fluid.core.is_compiled_with_cuda() else fluid.CPUPlace() ) exe = fluid.Executor(place) main = fluid.Program() startup = fluid.Program() with fluid.program_guard(main, startup): loss = net.build_model() optimizer = fluid.optimizer.SGD(learning_rate=0.1) optimizer.minimize(loss, parameter_list=parameter_list) exe.run(startup) exe.run(feed=net.init_data()) def _check_error_no_grad_set(self, net, no_grad_set): place = ( fluid.CUDAPlace(0) if fluid.core.is_compiled_with_cuda() else fluid.CPUPlace() ) exe = fluid.Executor(place) main = fluid.Program() startup = fluid.Program() with fluid.program_guard(main, startup): loss = net.build_model() optimizer = fluid.optimizer.SGD(learning_rate=0.1) optimizer.minimize(loss, no_grad_set=no_grad_set) exe.run(startup) exe.run(feed=net.init_data()) class SimpleNet(BackwardNet): def __init__(self): super().__init__() self.stop_gradient_grad_vars = { 'x_no_grad@GRAD', 'x2_no_grad@GRAD', 'x3_no_grad@GRAD', 'label_no_grad@GRAD', } self.no_grad_vars = set() self.params_names = {'w2v', 'fc_predict.b_0', 'fc_w'} self.op_path = [ 'lookup_table_v2', 'lookup_table_v2', # embedding 'elementwise_add', # merge 'mul', 'elementwise_add', 'softmax', # fc 'elementwise_sub', 'square', 'reduce_mean', ] # loss self.shape = [16, 50] def init_data(self): assert len(self.shape) == 2 x = np.random.randint(0, 90, self.shape).astype('int64') x2 = np.random.randint(0, 90, self.shape).astype('int64') x3 = np.random.randint(0, 90, self.shape).astype('int64') label = np.random.random([self.shape[0], 1]).astype('float32') return { 'x_no_grad': x, 'x2_no_grad': x2, 'x3_no_grad': x3, 'label_no_grad': label, } def build_model(self): # stop_gradient = True in input x = paddle.static.data( name='x_no_grad', shape=self.shape, dtype='int64' ) x2 = paddle.static.data( name='x2_no_grad', shape=self.shape, dtype='int64' ) x3 = paddle.static.data( name='x3_no_grad', shape=self.shape, dtype='int64' ) label = paddle.static.data( name='label_no_grad', shape=[self.shape[0], 1], dtype='float32' ) # shared layer, the grad of 'w2v' will be summed and renamed. # To test _addup_repetitive_outputs_ x_emb = paddle.static.nn.embedding( x, size=[100, 64], param_attr=fluid.ParamAttr(name='w2v') ) x2_emb = paddle.static.nn.embedding( x2, size=[100, 64], param_attr=fluid.ParamAttr(name='w2v') ) x3_emb = paddle.static.nn.embedding( x3, size=[100, 64], param_attr=fluid.ParamAttr(name='w2v') ) # merge layers x_merge = paddle.add(x_emb, x2_emb, name='x_add_x2') x2_merge = paddle.add(x2_emb, x3_emb, name='x2_add_x3') # shared fc_w predict = paddle.static.nn.fc( x=x_merge, size=1, activation='softmax', weight_attr=fluid.ParamAttr(name='fc_w'), name='fc_predict', ) # useless layer for calculating loss fc_no_use = paddle.static.nn.fc( x=x2_merge, size=1, activation='sigmoid', weight_attr=fluid.ParamAttr(name='fc_w'), name='fc_no_use', ) # loss cost = paddle.nn.functional.square_error_cost( input=predict, label=label ) loss = paddle.mean(cost, name='mean_loss') return loss class TestSimpleNet(TestBackward): def test_backward(self): """ Instantiate each NetClass to test backward. """ self.global_block_idx = 0 self.net = SimpleNet() self._check_all(self.net) class TestGradientsError(unittest.TestCase): def test_error(self): x = paddle.static.data(name='x', shape=[None, 2, 8, 8], dtype='float32') x.stop_gradient = False conv = paddle.static.nn.conv2d(x, 4, 1, bias_attr=False) y = F.relu(conv) with self.assertRaises(TypeError): x_grad = fluid.gradients(y.name, x) with self.assertRaises(TypeError): x_grad = fluid.gradients(y, x.name) with self.assertRaises(TypeError): x_grad = fluid.gradients([y], [x], target_gradients=x.name) with self.assertRaises(TypeError): x_grad = fluid.gradients([y], x, no_grad_set=conv) class TestSimpleNetWithErrorParamList(TestBackward): def test_parameter_list_type_error(self): self.global_block_idx = 0 self.net = SimpleNet() # The type of parameter_list argument must be list or tuple with self.assertRaises(TypeError): self._check_error_param_list(self.net, "test") # The type of parameter_list's member must be Variable or str test = paddle.static.data( name='test', shape=[None, 90], dtype='float32' ) with self.assertRaises(TypeError): self._check_error_param_list(self.net, [test, "test", 3]) class TestSimpleNetWithErrorNoGradSet(TestBackward): def test_no_grad_set_type_error(self): self.global_block_idx = 0 self.net = SimpleNet() # The type of no_grad_set argument must be set or list or tuple with self.assertRaises(TypeError): self._check_error_no_grad_set(self.net, "test") # The type of no_grad_set's member must be Variable or str test = paddle.static.data( name='test', shape=[None, 90], dtype='float32' ) with self.assertRaises(TypeError): self._check_error_no_grad_set(self.net, [test, "test", 3]) class TestAppendBackwardWithError(unittest.TestCase): def build_net(self): x = paddle.static.data(name='x', shape=[None, 13], dtype='int64') y = paddle.static.data(name='y', shape=[None, 1], dtype='float32') x_emb = paddle.static.nn.embedding(x, size=[100, 256]) y_predict = paddle.static.nn.fc(x=x_emb, size=1, name='my_fc') loss = paddle.nn.functional.square_error_cost(input=y_predict, label=y) avg_loss = paddle.mean(loss) param_names = [ param.name for param in fluid.default_main_program().block(0).all_parameters() ] return avg_loss, param_names def setUp(self): main_program = fluid.Program() with fluid.program_guard(main_program): self.avg_loss, self.param_names = self.build_net() def test_loss_type_error(self): with self.assertRaises(TypeError): fluid.backward.append_backward(loss=self.avg_loss.name) def test_parameter_list_type_error(self): with self.assertRaises(TypeError): self.param_names[0] = np.random.random([10]) fluid.backward.append_backward( loss=self.avg_loss, parameter_list=self.param_names ) def test_callback_type_error(self): with self.assertRaises(TypeError): def callback(block, context): return fluid.backward.append_backward( loss=self.avg_loss, callbacks=callback ) class TestGradientsWithOptimizer(unittest.TestCase): def _check_grad_op_name(self, forward_list, optimiezed_list): backward_list = [op + "_grad" for op in reversed(forward_list)] idx = optimiezed_list.index(backward_list[0], len(backward_list)) self.assertListEqual( backward_list, optimiezed_list[idx : idx + len(backward_list)] ) def test_gradient_with_optimizer(self): main = fluid.Program() startup = fluid.Program() with fluid.program_guard(main, startup): img = static.data(name='image', shape=[None, 784]) pred = static.nn.fc(x=img, size=10, activation='relu') loss = paddle.mean(pred) opt = paddle.optimizer.Momentum(learning_rate=0.01, momentum=0.9) forward_list = [o.type for o in main.current_block().ops] ( optimize_ops, pram_grads, ) = paddle.autograd.backward_mode.gradients_with_optimizer( main, opt ) optimized_list = [o.type for o in main.current_block().ops] self.assertGreater(len(optimized_list), len(forward_list)) self.assertIn(opt.type, optimized_list) self._check_grad_op_name(forward_list, optimized_list) # TODO(Aurelius84): add conditional network test class ConditionalNet(BackwardNet): def __init__(self): super().__init__() class TestBackwardUninitializedVariable(unittest.TestCase): """this case is found in yolov5 while to_static. gradient aggregation may cause sum a invalid variable. """ def test(self): paddle.enable_static() main_prg, startup_prg = paddle.static.Program(), paddle.static.Program() with paddle.static.program_guard(main_prg, startup_prg): gt = paddle.static.data(name='gt', shape=[4], dtype='float32') x = paddle.static.data(name='x', shape=[2], dtype='float32') gt.stop_gradient = True x.stop_gradient = False gt = gt.reshape([4, 1]).reshape([4]) loss = ( paddle.nn.functional.binary_cross_entropy(x, gt[:2]) + (gt[2:4] * x).sum() ) exe = paddle.static.Executor() paddle.fluid.backward.gradients(loss, []) exe.run(startup_prg) # Optimizer out = exe.run( main_prg, feed={ 'gt': np.array([1.0, 1.0, 0.0, 0.0], dtype='float32'), 'x': np.array([0.5, 0.5], dtype='float32'), }, fetch_list=[loss], ) print(out) class TestStripGradSuffix(unittest.TestCase): def test_strip_grad_suffix(self): cases = ( ('x@GRAD', 'x'), ('x@GRAD@GRAD', 'x'), ('x@GRAD@RENAME@1', 'x'), ('x@GRAD_slice_0@GRAD', 'x@GRAD_slice_0'), ('grad/grad/x@GRAD@RENAME@block0@1@GRAD', 'x'), ) for input_, desired in cases: self.assertEqual(backward._strip_grad_suffix_(input_), desired) if __name__ == '__main__': paddle.enable_static() unittest.main()