# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. # #Licensed under the Apache License, Version 2.0 (the "License"); #you may not use this file except in compliance with the License. #You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # #Unless required by applicable law or agreed to in writing, software #distributed under the License is distributed on an "AS IS" BASIS, #WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. #See the License for the specific language governing permissions and #limitations under the License. import unittest import numpy as np from op_test import OpTest class TestSumOp(OpTest): def setUp(self): self.op_type = "reduce_sum" self.inputs = {'X': np.random.random((5, 6, 10)).astype("float32")} self.outputs = {'Out': self.inputs['X'].sum(axis=0)} def test_check_output(self): self.check_output() def test_check_grad(self): self.check_grad(['X'], 'Out') class TestMeanOp(OpTest): def setUp(self): self.op_type = "reduce_mean" self.inputs = {'X': np.random.random((5, 6, 2, 10)).astype("float32")} self.attrs = {'dim': 1} self.outputs = {'Out': self.inputs['X'].mean(axis=self.attrs['dim'])} def test_check_output(self): self.check_output() def test_check_grad(self): self.check_grad(['X'], 'Out') class TestMaxOp(OpTest): """Remove Max with subgradient from gradient check to confirm the success of CI.""" def setUp(self): self.op_type = "reduce_max" self.inputs = {'X': np.random.random((5, 6, 10)).astype("float32")} self.attrs = {'dim': -1} self.outputs = {'Out': self.inputs['X'].max(axis=self.attrs['dim'])} def test_check_output(self): self.check_output() class TestMinOp(OpTest): """Remove Min with subgradient from gradient check to confirm the success of CI.""" def setUp(self): self.op_type = "reduce_min" self.inputs = {'X': np.random.random((5, 6, 10)).astype("float32")} self.attrs = {'dim': 2} self.outputs = {'Out': self.inputs['X'].min(axis=self.attrs['dim'])} def test_check_output(self): self.check_output() class TestKeepDimReduce(OpTest): def setUp(self): self.op_type = "reduce_sum" self.inputs = {'X': np.random.random((5, 6, 10)).astype("float32")} self.attrs = {'dim': -2, 'keep_dim': True} self.outputs = { 'Out': self.inputs['X'].sum(axis=self.attrs['dim'], keepdims=True) } def test_check_output(self): self.check_output() def test_check_grad(self): self.check_grad(['X'], 'Out') class Test1DReduce(OpTest): def setUp(self): self.op_type = "reduce_sum" self.inputs = {'X': np.random.random(20).astype("float32")} self.outputs = {'Out': self.inputs['X'].sum(axis=0)} def test_check_output(self): self.check_output() def test_check_grad(self): self.check_grad(['X'], 'Out') class TestReduceAll(OpTest): def setUp(self): self.op_type = "reduce_sum" self.inputs = {'X': np.random.random((5, 6, 2, 10)).astype("float32")} self.attrs = {'reduce_all': True} self.outputs = {'Out': self.inputs['X'].sum()} def test_check_output(self): self.check_output() def test_check_grad(self): self.check_grad(['X'], 'Out') if __name__ == '__main__': unittest.main()