/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #pragma once #include #include #include "paddle/fluid/framework/eigen.h" #include "paddle/fluid/framework/lod_tensor.h" #include "paddle/fluid/framework/op_registry.h" #include "paddle/fluid/framework/selected_rows.h" #include "paddle/fluid/operators/math/blas.h" namespace paddle { namespace operators { using Tensor = framework::Tensor; using LoDTensor = framework::LoDTensor; using SelectedRows = framework::SelectedRows; using DDim = framework::DDim; constexpr int64_t kNoPadding = -1; template class LookupTableKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext &context) const override { auto *ids_t = context.Input("Ids"); // int tensor auto *output_t = context.Output("Out"); // float tensor auto *table_var = context.InputVar("W"); auto id_name = context.InputNames("Ids").front(); auto embedding_name = context.InputNames("W").front(); auto out_name = context.OutputNames("Out").front(); int64_t padding_idx = context.Attr("padding_idx"); bool is_test = context.Attr("is_test"); int64_t *ids = const_cast(ids_t->data()); int64_t ids_numel = ids_t->numel(); if (table_var->IsType()) { auto *table_t = context.Input("W"); int64_t row_number = table_t->dims()[0]; int64_t row_width = table_t->dims()[1]; auto *table = table_t->data(); auto *output = output_t->mutable_data(context.GetPlace()); for (int64_t i = 0; i < ids_numel; ++i) { if (padding_idx != kNoPadding && ids[i] == padding_idx) { memset(output + i * row_width, 0, row_width * sizeof(T)); } else { PADDLE_ENFORCE_LT( ids[i], row_number, platform::errors::InvalidArgument( "Variable value (input) of OP(fluid.layers.embedding) " "expected >= 0 and < %ld, but got %ld. Please check input " "value.", row_number, ids[i])); PADDLE_ENFORCE_GE( ids[i], 0, platform::errors::InvalidArgument( "Variable value (input) of OP(fluid.layers.embedding) " "expected >= 0 and < %ld, but got %ld. Please check input " "value.", row_number, ids[i])); memcpy(output + i * row_width, table + ids[i] * row_width, row_width * sizeof(T)); } } } else if (table_var->IsType()) { const auto &table_t = table_var->Get(); int64_t row_width = table_t.value().dims()[1]; const auto *table = table_t.value().data(); auto *output = output_t->mutable_data(context.GetPlace()); auto input_data_type = table_t.value().type(); for (int64_t i = 0; i < ids_numel; ++i) { if (padding_idx != kNoPadding && ids[i] == padding_idx) { memset(output + i * row_width, 0, row_width * sizeof(T)); } else { PADDLE_ENFORCE_GE( ids[i], 0, platform::errors::InvalidArgument( "Variable value (input) of OP(fluid.layers.embedding) " "expected >= 0. But received %ld", ids[i])); if (is_test) { auto id_index = table_t.GetIndexFromId(ids[i]); if (id_index != -1) { if (input_data_type == framework::proto::VarType::INT8) { memcpy(output + i * row_width, table + id_index * row_width, row_width * sizeof(T)); } else { auto blas = math::GetBlas(context); blas.VCOPY(row_width, table + id_index * row_width, output + i * row_width); } } else { memset(output + i * row_width, 0, row_width * sizeof(T)); } } else { auto id_index = table_t.Index(ids[i]); PADDLE_ENFORCE_GE( ids[i], 0, platform::errors::InvalidArgument( "Variable value (input) of OP(fluid.layers.embedding) " "expected >= 0. But received %ld", ids[i])); PADDLE_ENFORCE_GE( id_index, 0, platform::errors::InvalidArgument( "the input key should be exists. But received %d.", id_index)); if (input_data_type == framework::proto::VarType::INT8) { memcpy(output + i * row_width, table + id_index * row_width, row_width * sizeof(T)); } else { auto blas = math::GetBlas(context); blas.VCOPY(row_width, table + id_index * row_width, output + i * row_width); } } } } } } }; template class LookupTableGradKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext &context) const override { auto *table_var = context.InputVar("W"); DDim table_dim; if (table_var->IsType()) { table_dim = context.Input("W")->dims(); } else if (table_var->IsType()) { auto *table_t = context.Input("W"); table_dim = table_t->value().dims(); } else { PADDLE_THROW(platform::errors::InvalidArgument( "The parameter W of a LookupTable " "must be either LoDTensor or SelectedRows")); } int64_t padding_idx = context.Attr("padding_idx"); bool is_sparse = context.Attr("is_sparse"); // Since paddings are not trainable and fixed in forward, the gradient of // paddings makes no sense and we don't deal with it in backward. if (is_sparse) { auto *ids = context.Input("Ids"); auto *d_output = context.Input(framework::GradVarName("Out")); auto *d_table = context.Output(framework::GradVarName("W")); auto *ids_data = ids->data(); int64_t ids_num = ids->numel(); std::vector new_rows; new_rows.resize(ids_num); std::memcpy(&new_rows[0], ids_data, ids_num * sizeof(int64_t)); d_table->set_rows(new_rows); auto *d_table_value = d_table->mutable_value(); d_table_value->Resize({ids_num, table_dim[1]}); d_table_value->mutable_data(context.GetPlace()); d_table->set_height(table_dim[0]); auto *d_output_data = d_output->data(); auto *d_table_data = d_table_value->data(); auto d_output_dims = d_output->dims(); auto d_output_dims_2d = framework::flatten_to_2d(d_output_dims, d_output_dims.size() - 1); PADDLE_ENFORCE_EQ(d_table_value->dims(), d_output_dims_2d, platform::errors::InvalidArgument( "ShapeError: The shape of lookup_table@Grad and " "output@Grad should be same. " "But received lookup_table@Grad's shape = [%s], " "output@Grad's shape = [%s].", d_table_value->dims(), d_output_dims_2d)); memcpy(d_table_data, d_output_data, sizeof(T) * d_output->numel()); } else { auto *ids = context.Input("Ids"); auto *d_output = context.Input(framework::GradVarName("Out")); auto *d_table = context.Output(framework::GradVarName("W")); auto *ids_data = ids->data(); int64_t N = table_dim[0]; int64_t D = table_dim[1]; auto *d_output_data = d_output->data(); auto *d_table_data = d_table->mutable_data(context.GetPlace()); memset(d_table_data, 0, d_table->numel() * sizeof(T)); for (int64_t i = 0; i < ids->numel(); ++i) { if (padding_idx != kNoPadding && ids_data[i] == padding_idx) { // the gradient of padding_idx should be 0, already done by memset, so // do nothing. } else { PADDLE_ENFORCE_LT( ids_data[i], N, platform::errors::InvalidArgument( "Variable value (input) of OP(fluid.layers.embedding) " "expected >= 0 and < %ld, but got %ld. Please check input " "value.", N, ids_data[i])); PADDLE_ENFORCE_GE( ids_data[i], 0, platform::errors::InvalidArgument( "Variable value (input) of OP(fluid.layers.embedding) " "expected >= 0 and < %ld, but got %ld. Please check input" "value.", N, ids_data[i])); for (int j = 0; j < D; ++j) { d_table_data[ids_data[i] * D + j] += d_output_data[i * D + j]; } } } } } }; } // namespace operators } // namespace paddle