// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/fluid/inference/analysis/analyzer.h" #include "paddle/fluid/inference/api/api_impl.h" #include "paddle/fluid/inference/api/paddle_inference_api.h" #include "paddle/fluid/inference/tensorrt/convert/op_converter.h" #include "paddle/fluid/inference/utils/singleton.h" #include "paddle/fluid/operators/tensorrt_engine_op.h" namespace paddle { using inference::analysis::Argument; using inference::Singleton; using inference::analysis::Analyzer; using framework::proto::ProgramDesc; using paddle::contrib::MixedRTConfig; class TensorRTSubgraphPredictor : public NativePaddlePredictor { public: explicit TensorRTSubgraphPredictor(const MixedRTConfig& config) : NativePaddlePredictor(config), config_(config) {} bool Init(const std::shared_ptr& parent_scope) { FLAGS_IA_enable_tensorrt_subgraph_engine = true; VLOG(30) << "Predictor::init()"; if (config_.use_gpu) { place_ = paddle::platform::CUDAPlace(config_.device); } else { place_ = paddle::platform::CPUPlace(); } if (parent_scope) { scope_ = parent_scope; sub_scope_ = &(parent_scope->NewScope()); } else { paddle::framework::InitDevices(false); scope_.reset(new paddle::framework::Scope()); } executor_.reset(new paddle::framework::Executor(place_)); // Initialize the inference program if (!config_.model_dir.empty()) { // Parameters are saved in separate files sited in // the specified `dirname`. inference_program_ = paddle::inference::Load( executor_.get(), scope_.get(), config_.model_dir); } else if (!config_.prog_file.empty() && !config_.param_file.empty()) { // All parameters are saved in a single file. // The file names should be consistent with that used // in Python API `fluid.io.save_inference_model`. inference_program_ = paddle::inference::Load( executor_.get(), scope_.get(), config_.prog_file, config_.param_file); } else { LOG(ERROR) << "fail to load inference model."; return false; } OptimizeInferenceProgram(); ctx_ = executor_->Prepare(*inference_program_, 0); VLOG(50) << "to create variables"; executor_->CreateVariables(*inference_program_, sub_scope_ ? sub_scope_ : scope_.get(), 0); // Get the feed_target_names and fetch_target_names PrepareFeedFetch(); return true; } bool Run(const std::vector& inputs, std::vector* output_data, int batch_size = -1) override { PADDLE_ENFORCE_GT(batch_size, 0, "TensorRT engine needs the argument batch_size set"); FLAGS_tensorrt_engine_batch_size = batch_size; return NativePaddlePredictor::Run(inputs, output_data, batch_size); } void OptimizeInferenceProgram() { // Analyze inference_program Argument argument; argument.Set("minimum_subgraph_size", new int(config_.minimum_subgraph_size)); argument.Set("max_batch_size", new int(config_.max_batch_size)); argument.Set("workspace_size", new int(config_.workspace_size)); argument.Set("precision_mode", new std::string(config_.precision_mode)); if (!config_.model_dir.empty()) { argument.fluid_model_dir.reset(new std::string(config_.model_dir)); } else { PADDLE_ENFORCE( !config_.param_file.empty(), "Either model_dir or (param_file, prog_file) should be set."); PADDLE_ENFORCE(!config_.prog_file.empty()); argument.fluid_model_program_path.reset( new std::string(config_.prog_file)); argument.fluid_model_param_path.reset( new std::string(config_.param_file)); } argument.origin_program_desc.reset( new ProgramDesc(*inference_program_->Proto())); Singleton::Global().Run(&argument); CHECK(argument.transformed_program_desc); VLOG(50) << "transformed program:\n" << argument.transformed_program_desc->SerializeAsString(); VLOG(50) << "to prepare executor"; inference_program_.reset( new framework::ProgramDesc(*argument.transformed_program_desc)); } private: MixedRTConfig config_; }; template <> std::unique_ptr CreatePaddlePredictor( const MixedRTConfig& config) { VLOG(30) << "create TensorRTSubgraphPredictor"; if (config.use_gpu) { // 1. GPU memeroy PADDLE_ENFORCE_GT( config.fraction_of_gpu_memory, 0.f, "fraction_of_gpu_memory in the config should be set to range (0., 1.]"); PADDLE_ENFORCE_GE(config.device, 0, "Invalid device id %d", config.device); std::vector flags; if (config.fraction_of_gpu_memory >= 0.0f || config.fraction_of_gpu_memory <= 0.95f) { flags.push_back("dummpy"); std::string flag = "--fraction_of_gpu_memory_to_use=" + std::to_string(config.fraction_of_gpu_memory); flags.push_back(flag); VLOG(30) << "set flag: " << flag; framework::InitGflags(flags); } } std::unique_ptr predictor( new TensorRTSubgraphPredictor(config)); if (!dynamic_cast(predictor.get()) ->Init(nullptr)) { return nullptr; } return std::move(predictor); } template <> std::unique_ptr CreatePaddlePredictor( const MixedRTConfig& config) { return CreatePaddlePredictor(config); } } // namespace paddle USE_TRT_CONVERTER(elementwise_add_weight); USE_TRT_CONVERTER(elementwise_add_tensor); USE_TRT_CONVERTER(elementwise_sub_tensor); USE_TRT_CONVERTER(elementwise_div_tensor); USE_TRT_CONVERTER(elementwise_mul_tensor); USE_TRT_CONVERTER(elementwise_max_tensor); USE_TRT_CONVERTER(elementwise_min_tensor); USE_TRT_CONVERTER(elementwise_pow_tensor); USE_TRT_CONVERTER(mul); USE_TRT_CONVERTER(conv2d); USE_TRT_CONVERTER(relu); USE_TRT_CONVERTER(sigmoid); USE_TRT_CONVERTER(tanh); USE_TRT_CONVERTER(fc); USE_TRT_CONVERTER(pool2d); USE_TRT_CONVERTER(softmax); USE_TRT_CONVERTER(batch_norm); USE_TRT_CONVERTER(concat); USE_TRT_CONVERTER(dropout); USE_TRT_CONVERTER(pad);