// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/fluid/lite/api/cxx_api.h" #include #include #include #include "paddle/fluid/lite/core/mir/passes.h" #include "paddle/fluid/lite/core/op_registry.h" DEFINE_string(model_dir, "", ""); DEFINE_string(optimized_model, "", ""); // For training. DEFINE_string(startup_program_path, "", ""); DEFINE_string(main_program_path, "", ""); namespace paddle { namespace lite { TEST(CXXApi, test) { lite::ExecutorLite predictor; #ifndef LITE_WITH_CUDA std::vector valid_places({Place{TARGET(kHost), PRECISION(kFloat)}, Place{TARGET(kX86), PRECISION(kFloat)}}); #else std::vector valid_places({ Place{TARGET(kHost), PRECISION(kFloat), DATALAYOUT(kNCHW)}, Place{TARGET(kCUDA), PRECISION(kFloat), DATALAYOUT(kNCHW)}, Place{TARGET(kCUDA), PRECISION(kAny), DATALAYOUT(kNCHW)}, Place{TARGET(kHost), PRECISION(kAny), DATALAYOUT(kNCHW)}, Place{TARGET(kCUDA), PRECISION(kAny), DATALAYOUT(kAny)}, Place{TARGET(kHost), PRECISION(kAny), DATALAYOUT(kAny)}, }); #endif predictor.Build(FLAGS_model_dir, Place{TARGET(kX86), PRECISION(kFloat)}, // origin cuda valid_places); auto* input_tensor = predictor.GetInput(0); input_tensor->Resize(DDim(std::vector({100, 100}))); auto* data = input_tensor->mutable_data(); for (int i = 0; i < 100 * 100; i++) { data[i] = i; } // LOG(INFO) << "input " << *input_tensor; predictor.Run(); auto* out = predictor.GetOutput(0); LOG(INFO) << out << " memory size " << out->data_size(); LOG(INFO) << "out " << out->data()[0]; LOG(INFO) << "out " << out->data()[1]; LOG(INFO) << "dims " << out->dims(); // LOG(INFO) << "out " << *out; } #ifndef LITE_WITH_LIGHT_WEIGHT_FRAMEWORK TEST(CXXApi, save_model) { lite::ExecutorLite predictor; std::vector valid_places({Place{TARGET(kHost), PRECISION(kFloat)}, Place{TARGET(kX86), PRECISION(kFloat)}}); predictor.Build(FLAGS_model_dir, Place{TARGET(kCUDA), PRECISION(kFloat)}, valid_places); LOG(INFO) << "Save optimized model to " << FLAGS_optimized_model; predictor.SaveModel(FLAGS_optimized_model); } #endif // LITE_WITH_LIGHT_WEIGHT_FRAMEWORK #ifndef LITE_WITH_LIGHT_WEIGHT_FRAMEWORK /*TEST(CXXTrainer, train) { Place prefer_place({TARGET(kHost), PRECISION(kFloat), DATALAYOUT(kNCHW)}); std::vector valid_places({prefer_place}); auto scope = std::make_shared(); CXXTrainer trainer(scope, prefer_place, valid_places); std::string main_program_pb, startup_program_pb; ReadBinaryFile(FLAGS_main_program_path, &main_program_pb); ReadBinaryFile(FLAGS_startup_program_path, &startup_program_pb); framework::proto::ProgramDesc main_program_desc, startup_program_desc; main_program_desc.ParseFromString(main_program_pb); startup_program_desc.ParseFromString(startup_program_pb); // LOG(INFO) << main_program_desc.DebugString(); for (const auto& op : main_program_desc.blocks(0).ops()) { LOG(INFO) << "get op " << op.type(); } return; trainer.RunStartupProgram(startup_program_desc); auto& exe = trainer.BuildMainProgramExecutor(main_program_desc); auto* tensor0 = exe.GetInput(0); tensor0->Resize(std::vector({100, 100})); auto* data0 = tensor0->mutable_data(); data0[0] = 0; exe.Run(); }*/ #endif // LITE_WITH_LIGHT_WEIGHT_FRAMEWORK } // namespace lite } // namespace paddle USE_LITE_OP(mul); USE_LITE_OP(fc); USE_LITE_OP(relu); USE_LITE_OP(scale); USE_LITE_OP(feed); USE_LITE_OP(fetch); USE_LITE_OP(io_copy); USE_LITE_OP(elementwise_add) USE_LITE_OP(elementwise_sub) USE_LITE_OP(square) USE_LITE_OP(softmax) USE_LITE_OP(dropout) USE_LITE_OP(concat) USE_LITE_KERNEL(feed, kHost, kAny, kAny, def); USE_LITE_KERNEL(fetch, kHost, kAny, kAny, def); #ifdef LITE_WITH_X86 USE_LITE_KERNEL(relu, kX86, kFloat, kNCHW, def); USE_LITE_KERNEL(mul, kX86, kFloat, kNCHW, def); USE_LITE_KERNEL(fc, kX86, kFloat, kNCHW, def); USE_LITE_KERNEL(scale, kX86, kFloat, kNCHW, def); USE_LITE_KERNEL(square, kX86, kFloat, kNCHW, def); USE_LITE_KERNEL(elementwise_sub, kX86, kFloat, kNCHW, def); USE_LITE_KERNEL(elementwise_add, kX86, kFloat, kNCHW, def); USE_LITE_KERNEL(softmax, kX86, kFloat, kNCHW, def); USE_LITE_KERNEL(dropout, kX86, kFloat, kNCHW, def); USE_LITE_KERNEL(concat, kX86, kFloat, kNCHW, def); #endif #ifdef LITE_WITH_CUDA USE_LITE_KERNEL(mul, kCUDA, kFloat, kNCHW, def); USE_LITE_KERNEL(io_copy, kCUDA, kAny, kAny, host_to_device); USE_LITE_KERNEL(io_copy, kCUDA, kAny, kAny, device_to_host); #endif