# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import division from __future__ import print_function import paddle import paddle.nn as nn from paddle.utils.download import get_weights_path_from_url __all__ = [ 'ResNet', 'resnet18', 'resnet34', 'resnet50', 'resnet101', 'resnet152' ] model_urls = { 'resnet18': ('https://paddle-hapi.bj.bcebos.com/models/resnet18.pdparams', 'cf548f46534aa3560945be4b95cd11c4'), 'resnet34': ('https://paddle-hapi.bj.bcebos.com/models/resnet34.pdparams', '8d2275cf8706028345f78ac0e1d31969'), 'resnet50': ('https://paddle-hapi.bj.bcebos.com/models/resnet50.pdparams', 'ca6f485ee1ab0492d38f323885b0ad80'), 'resnet101': ('https://paddle-hapi.bj.bcebos.com/models/resnet101.pdparams', '02f35f034ca3858e1e54d4036443c92d'), 'resnet152': ('https://paddle-hapi.bj.bcebos.com/models/resnet152.pdparams', '7ad16a2f1e7333859ff986138630fd7a'), } class BasicBlock(nn.Layer): expansion = 1 def __init__(self, inplanes, planes, stride=1, downsample=None, groups=1, base_width=64, dilation=1, norm_layer=None): super(BasicBlock, self).__init__() if norm_layer is None: norm_layer = nn.BatchNorm2D if dilation > 1: raise NotImplementedError( "Dilation > 1 not supported in BasicBlock") self.conv1 = nn.Conv2D( inplanes, planes, 3, padding=1, stride=stride, bias_attr=False) self.bn1 = norm_layer(planes) self.relu = nn.ReLU() self.conv2 = nn.Conv2D(planes, planes, 3, padding=1, bias_attr=False) self.bn2 = norm_layer(planes) self.downsample = downsample self.stride = stride def forward(self, x): identity = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) if self.downsample is not None: identity = self.downsample(x) out += identity out = self.relu(out) return out class BottleneckBlock(nn.Layer): expansion = 4 def __init__(self, inplanes, planes, stride=1, downsample=None, groups=1, base_width=64, dilation=1, norm_layer=None): super(BottleneckBlock, self).__init__() if norm_layer is None: norm_layer = nn.BatchNorm2D width = int(planes * (base_width / 64.)) * groups self.conv1 = nn.Conv2D(inplanes, width, 1, bias_attr=False) self.bn1 = norm_layer(width) self.conv2 = nn.Conv2D( width, width, 3, padding=dilation, stride=stride, groups=groups, dilation=dilation, bias_attr=False) self.bn2 = norm_layer(width) self.conv3 = nn.Conv2D( width, planes * self.expansion, 1, bias_attr=False) self.bn3 = norm_layer(planes * self.expansion) self.relu = nn.ReLU() self.downsample = downsample self.stride = stride def forward(self, x): identity = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) out = self.relu(out) out = self.conv3(out) out = self.bn3(out) if self.downsample is not None: identity = self.downsample(x) out += identity out = self.relu(out) return out class ResNet(nn.Layer): """ResNet model from `"Deep Residual Learning for Image Recognition" `_ Args: Block (BasicBlock|BottleneckBlock): block module of model. depth (int): layers of resnet, default: 50. num_classes (int): output dim of last fc layer. If num_classes <=0, last fc layer will not be defined. Default: 1000. with_pool (bool): use pool before the last fc layer or not. Default: True. Examples: .. code-block:: python from paddle.vision.models import ResNet from paddle.vision.models.resnet import BottleneckBlock, BasicBlock resnet50 = ResNet(BottleneckBlock, 50) resnet18 = ResNet(BasicBlock, 18) """ def __init__(self, block, depth, num_classes=1000, with_pool=True): super(ResNet, self).__init__() layer_cfg = { 18: [2, 2, 2, 2], 34: [3, 4, 6, 3], 50: [3, 4, 6, 3], 101: [3, 4, 23, 3], 152: [3, 8, 36, 3] } layers = layer_cfg[depth] self.num_classes = num_classes self.with_pool = with_pool self._norm_layer = nn.BatchNorm2D self.inplanes = 64 self.dilation = 1 self.conv1 = nn.Conv2D( 3, self.inplanes, kernel_size=7, stride=2, padding=3, bias_attr=False) self.bn1 = self._norm_layer(self.inplanes) self.relu = nn.ReLU() self.maxpool = nn.MaxPool2D(kernel_size=3, stride=2, padding=1) self.layer1 = self._make_layer(block, 64, layers[0]) self.layer2 = self._make_layer(block, 128, layers[1], stride=2) self.layer3 = self._make_layer(block, 256, layers[2], stride=2) self.layer4 = self._make_layer(block, 512, layers[3], stride=2) if with_pool: self.avgpool = nn.AdaptiveAvgPool2D((1, 1)) if num_classes > 0: self.fc = nn.Linear(512 * block.expansion, num_classes) def _make_layer(self, block, planes, blocks, stride=1, dilate=False): norm_layer = self._norm_layer downsample = None previous_dilation = self.dilation if dilate: self.dilation *= stride stride = 1 if stride != 1 or self.inplanes != planes * block.expansion: downsample = nn.Sequential( nn.Conv2D( self.inplanes, planes * block.expansion, 1, stride=stride, bias_attr=False), norm_layer(planes * block.expansion), ) layers = [] layers.append( block(self.inplanes, planes, stride, downsample, 1, 64, previous_dilation, norm_layer)) self.inplanes = planes * block.expansion for _ in range(1, blocks): layers.append(block(self.inplanes, planes, norm_layer=norm_layer)) return nn.Sequential(*layers) def forward(self, x): x = self.conv1(x) x = self.bn1(x) x = self.relu(x) x = self.maxpool(x) x = self.layer1(x) x = self.layer2(x) x = self.layer3(x) x = self.layer4(x) if self.with_pool: x = self.avgpool(x) if self.num_classes > 0: x = paddle.flatten(x, 1) x = self.fc(x) return x def _resnet(arch, Block, depth, pretrained, **kwargs): model = ResNet(Block, depth, **kwargs) if pretrained: assert arch in model_urls, "{} model do not have a pretrained model now, you should set pretrained=False".format( arch) weight_path = get_weights_path_from_url(model_urls[arch][0], model_urls[arch][1]) param = paddle.load(weight_path) model.set_dict(param) return model def resnet18(pretrained=False, **kwargs): """ResNet 18-layer model Args: pretrained (bool): If True, returns a model pre-trained on ImageNet Examples: .. code-block:: python from paddle.vision.models import resnet18 # build model model = resnet18() # build model and load imagenet pretrained weight # model = resnet18(pretrained=True) """ return _resnet('resnet18', BasicBlock, 18, pretrained, **kwargs) def resnet34(pretrained=False, **kwargs): """ResNet 34-layer model Args: pretrained (bool): If True, returns a model pre-trained on ImageNet Examples: .. code-block:: python from paddle.vision.models import resnet34 # build model model = resnet34() # build model and load imagenet pretrained weight # model = resnet34(pretrained=True) """ return _resnet('resnet34', BasicBlock, 34, pretrained, **kwargs) def resnet50(pretrained=False, **kwargs): """ResNet 50-layer model Args: pretrained (bool): If True, returns a model pre-trained on ImageNet Examples: .. code-block:: python from paddle.vision.models import resnet50 # build model model = resnet50() # build model and load imagenet pretrained weight # model = resnet50(pretrained=True) """ return _resnet('resnet50', BottleneckBlock, 50, pretrained, **kwargs) def resnet101(pretrained=False, **kwargs): """ResNet 101-layer model Args: pretrained (bool): If True, returns a model pre-trained on ImageNet Examples: .. code-block:: python from paddle.vision.models import resnet101 # build model model = resnet101() # build model and load imagenet pretrained weight # model = resnet101(pretrained=True) """ return _resnet('resnet101', BottleneckBlock, 101, pretrained, **kwargs) def resnet152(pretrained=False, **kwargs): """ResNet 152-layer model Args: pretrained (bool): If True, returns a model pre-trained on ImageNet Examples: .. code-block:: python from paddle.vision.models import resnet152 # build model model = resnet152() # build model and load imagenet pretrained weight # model = resnet152(pretrained=True) """ return _resnet('resnet152', BottleneckBlock, 152, pretrained, **kwargs)