# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Define functions about array. from ..static import Variable from ..framework import LayerHelper, core, _non_static_mode from ..fluid.data_feeder import check_type from ..fluid.data_feeder import check_variable_and_dtype __all__ = [] def array_length(array): """ This OP is used to get the length of the input array. Args: array (list|Tensor): The input array that will be used to compute the length. In dynamic mode, ``array`` is a Python list. But in static mode, array is a Tensor whose VarType is LOD_TENSOR_ARRAY. Returns: Tensor: 1-D Tensor with shape [1], which is the length of array. Examples: .. code-block:: python import paddle arr = paddle.tensor.create_array(dtype='float32') x = paddle.full(shape=[3, 3], fill_value=5, dtype="float32") i = paddle.zeros(shape=[1], dtype="int32") arr = paddle.tensor.array_write(x, i, array=arr) arr_len = paddle.tensor.array_length(arr) print(arr_len) # 1 """ if _non_static_mode(): assert isinstance( array, list), "The 'array' in array_write must be a list in dygraph mode" return len(array) if not isinstance( array, Variable) or array.type != core.VarDesc.VarType.LOD_TENSOR_ARRAY: raise TypeError( "array should be tensor array vairable in array_length Op") helper = LayerHelper('array_length', **locals()) tmp = helper.create_variable_for_type_inference(dtype='int64') tmp.stop_gradient = True helper.append_op(type='lod_array_length', inputs={'X': [array]}, outputs={'Out': [tmp]}) return tmp def array_read(array, i): """ This OP is used to read data at the specified position from the input array. Case: .. code-block:: text Input: The shape of first three tensors are [1], and that of the last one is [1,2]: array = ([0.6], [0.1], [0.3], [0.4, 0.2]) And: i = [3] Output: output = [0.4, 0.2] Args: array (list|Tensor): The input array. In dynamic mode, ``array`` is a Python list. But in static mode, array is a Tensor whose ``VarType`` is ``LOD_TENSOR_ARRAY``. i (Tensor): 1-D Tensor, whose shape is [1] and dtype is int64. It represents the specified read position of ``array``. Returns: Tensor: A Tensor that is read at the specified position of ``array``. Examples: .. code-block:: python import paddle arr = paddle.tensor.create_array(dtype="float32") x = paddle.full(shape=[1, 3], fill_value=5, dtype="float32") i = paddle.zeros(shape=[1], dtype="int32") arr = paddle.tensor.array_write(x, i, array=arr) item = paddle.tensor.array_read(arr, i) print(item) # [[5., 5., 5.]] """ if _non_static_mode(): assert isinstance( array, list), "The 'array' in array_read must be list in dygraph mode" assert isinstance( i, Variable ), "The index 'i' in array_read must be Variable in dygraph mode" assert i.shape == [ 1 ], "The shape of index 'i' should be [1] in dygraph mode" i = i.numpy().item(0) return array[i] check_variable_and_dtype(i, 'i', ['int64'], 'array_read') helper = LayerHelper('array_read', **locals()) if not isinstance( array, Variable) or array.type != core.VarDesc.VarType.LOD_TENSOR_ARRAY: raise TypeError("array should be tensor array vairable") out = helper.create_variable_for_type_inference(dtype=array.dtype) helper.append_op(type='read_from_array', inputs={ 'X': [array], 'I': [i] }, outputs={'Out': [out]}) return out def array_write(x, i, array=None): """ This OP writes the input ``x`` into the i-th position of the ``array`` returns the modified array. If ``array`` is none, a new array will be created and returned. Args: x (Tensor): The input data to be written into array. It's multi-dimensional Tensor or LoDTensor. Data type: float32, float64, int32, int64 and bool. i (Tensor): 1-D Tensor with shape [1], which represents the position into which ``x`` is written. array (list|Tensor, optional): The array into which ``x`` is written. The default value is None, when a new array will be created and returned as a result. In dynamic mode, ``array`` is a Python list. But in static mode, array is a Tensor whose ``VarType`` is ``LOD_TENSOR_ARRAY``. Returns: list|Tensor: The input ``array`` after ``x`` is written into. Examples: .. code-block:: python import paddle arr = paddle.tensor.create_array(dtype="float32") x = paddle.full(shape=[1, 3], fill_value=5, dtype="float32") i = paddle.zeros(shape=[1], dtype="int32") arr = paddle.tensor.array_write(x, i, array=arr) item = paddle.tensor.array_read(arr, i) print(item) # [[5., 5., 5.]] """ if _non_static_mode(): assert isinstance( x, Variable ), "The input data 'x' in array_write must be Variable in dygraph mode" assert isinstance( i, Variable ), "The index 'i' in array_write must be Variable in dygraph mode" assert i.shape == [ 1 ], "The shape of index 'i' should be [1] in dygraph mode" i = i.numpy().item(0) if array is None: array = create_array(x.dtype) assert isinstance( array, list), "The 'array' in array_write must be a list in dygraph mode" assert i <= len( array ), "The index 'i' should not be greater than the length of 'array' in dygraph mode" if i < len(array): array[i] = x else: array.append(x) return array check_variable_and_dtype(i, 'i', ['int64'], 'array_write') check_type(x, 'x', (Variable), 'array_write') helper = LayerHelper('array_write', **locals()) if array is not None: if not isinstance( array, Variable ) or array.type != core.VarDesc.VarType.LOD_TENSOR_ARRAY: raise TypeError( "array should be tensor array vairable in array_write Op") if array is None: array = helper.create_variable( name="{0}.out".format(helper.name), type=core.VarDesc.VarType.LOD_TENSOR_ARRAY, dtype=x.dtype) helper.append_op(type='write_to_array', inputs={ 'X': [x], 'I': [i] }, outputs={'Out': [array]}) return array def create_array(dtype, initialized_list=None): """ This OP creates an array. It is used as the input of :ref:`api_paddle_tensor_array_array_read` and :ref:`api_paddle_tensor_array_array_write`. Args: dtype (str): The data type of the elements in the array. Support data type: float32, float64, int32, int64 and bool. initialized_list(list): Used to initialize as default value for created array. All values in initialized list should be a Tensor. Returns: list|Tensor: An empty array. In dynamic mode, ``array`` is a Python list. But in static mode, array is a Tensor whose ``VarType`` is ``LOD_TENSOR_ARRAY``. Examples: .. code-block:: python import paddle arr = paddle.tensor.create_array(dtype="float32") x = paddle.full(shape=[1, 3], fill_value=5, dtype="float32") i = paddle.zeros(shape=[1], dtype="int32") arr = paddle.tensor.array_write(x, i, array=arr) item = paddle.tensor.array_read(arr, i) print(item) # [[5., 5., 5.]] """ array = [] if initialized_list is not None: if not isinstance(initialized_list, (list, tuple)): raise TypeError( "Require type(initialized_list) should be list/tuple, but received {}" .format(type(initialized_list))) array = list(initialized_list) # NOTE: Only support plain list like [x, y,...], not support nested list in static mode. for val in array: if not isinstance(val, Variable): raise TypeError( "All values in `initialized_list` should be Variable, but recevied {}." .format(type(val))) if _non_static_mode(): return array helper = LayerHelper("array", **locals()) tensor_array = helper.create_variable( name="{0}.out".format(helper.name), type=core.VarDesc.VarType.LOD_TENSOR_ARRAY, dtype=dtype) for val in array: array_write(x=val, i=array_length(tensor_array), array=tensor_array) return tensor_array