# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np from op_test import OpTest import paddle from paddle.fluid.framework import _test_eager_guard paddle.enable_static() class TestDeterminantOp(OpTest): def setUp(self): self.python_api = paddle.linalg.det self.init_data() self.op_type = "determinant" self.outputs = {'Out': self.target} def test_check_output(self): self.check_output(check_eager=True) def test_check_grad(self): self.check_grad(['Input'], ['Out'], check_eager=True) def init_data(self): np.random.seed(0) self.case = np.random.rand(3, 3, 3, 5, 5).astype('float64') self.inputs = {'Input': self.case} self.target = np.linalg.det(self.case) class TestDeterminantOpCase1(TestDeterminantOp): def init_data(self): np.random.seed(0) self.case = np.random.rand(10, 10).astype('float32') self.inputs = {'Input': self.case} self.target = np.linalg.det(self.case) class TestDeterminantOpCase2(TestDeterminantOp): def init_data(self): np.random.seed(0) # not invertible matrix self.case = np.ones([4, 2, 4, 4]).astype('float64') self.inputs = {'Input': self.case} self.target = np.linalg.det(self.case) class TestDeterminantAPI(unittest.TestCase): def setUp(self): np.random.seed(0) self.shape = [3, 3, 5, 5] self.x = np.random.random(self.shape).astype(np.float32) self.place = paddle.CPUPlace() def test_api_static(self): paddle.enable_static() with paddle.static.program_guard(paddle.static.Program()): x = paddle.fluid.data('X', self.shape) out = paddle.linalg.det(x) exe = paddle.static.Executor(self.place) res = exe.run(feed={'X': self.x}, fetch_list=[out]) out_ref = np.linalg.det(self.x) for out in res: np.testing.assert_allclose(out, out_ref, rtol=0.001) def test_api_dygraph(self): paddle.disable_static(self.place) x_tensor = paddle.to_tensor(self.x) out = paddle.linalg.det(x_tensor) out_ref = np.linalg.det(self.x) np.testing.assert_allclose(out.numpy(), out_ref, rtol=0.001) paddle.enable_static() def test_eager(self): with _test_eager_guard(): self.test_api_dygraph() class TestSlogDeterminantOp(OpTest): def setUp(self): self.op_type = "slogdeterminant" self.python_api = paddle.linalg.slogdet self.init_data() self.outputs = {'Out': self.target} def test_check_output(self): self.check_output(check_eager=True) def test_check_grad(self): # the slog det's grad value is always huge self.check_grad(['Input'], ['Out'], max_relative_error=0.1, check_eager=True) def init_data(self): np.random.seed(0) self.case = np.random.rand(4, 5, 5).astype('float64') self.inputs = {'Input': self.case} self.target = np.array(np.linalg.slogdet(self.case)) class TestSlogDeterminantOpCase1(TestSlogDeterminantOp): def init_data(self): np.random.seed(0) self.case = np.random.rand(2, 2, 5, 5).astype(np.float32) self.inputs = {'Input': self.case} self.target = np.array(np.linalg.slogdet(self.case)) class TestSlogDeterminantAPI(unittest.TestCase): def setUp(self): np.random.seed(0) self.shape = [3, 3, 5, 5] self.x = np.random.random(self.shape).astype(np.float32) self.place = paddle.CPUPlace() def test_api_static(self): paddle.enable_static() with paddle.static.program_guard(paddle.static.Program()): x = paddle.fluid.data('X', self.shape) out = paddle.linalg.slogdet(x) exe = paddle.static.Executor(self.place) res = exe.run(feed={'X': self.x}, fetch_list=[out]) out_ref = np.array(np.linalg.slogdet(self.x)) for out in res: np.testing.assert_allclose(out, out_ref, rtol=0.001) def test_api_dygraph(self): paddle.disable_static(self.place) x_tensor = paddle.to_tensor(self.x) out = paddle.linalg.slogdet(x_tensor) out_ref = np.array(np.linalg.slogdet(self.x)) np.testing.assert_allclose(out.numpy(), out_ref, rtol=0.001) paddle.enable_static() if __name__ == '__main__': unittest.main()