# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import unittest import numpy as np from op_test import OpTest import paddle.fluid.core as core from paddle.fluid.op import Operator class ElementwiseMulOp(OpTest): def setUp(self): self.op_type = "elementwise_mul" self.inputs = { 'X': np.random.uniform(0.1, 1, [13, 17]).astype("float64"), 'Y': np.random.uniform(0.1, 1, [13, 17]).astype("float64") } self.outputs = {'Out': np.multiply(self.inputs['X'], self.inputs['Y'])} def test_check_output(self): self.check_output() def test_check_grad_normal(self): self.check_grad(['X', 'Y'], 'Out') def test_check_grad_ingore_x(self): self.check_grad(['Y'], 'Out', no_grad_set=set("X")) def test_check_grad_ingore_y(self): self.check_grad(['X'], 'Out', no_grad_set=set('Y')) class TestElementwiseMulOp_scalar(ElementwiseMulOp): def setUp(self): self.op_type = "elementwise_mul" self.inputs = { 'X': np.random.rand(2, 3, 4).astype(np.float32), 'Y': np.random.rand(1).astype(np.float32) } self.outputs = {'Out': self.inputs['X'] * self.inputs['Y']} class TestElementwiseMulOp_Vector(ElementwiseMulOp): def setUp(self): self.op_type = "elementwise_mul" self.inputs = { 'X': np.random.random((32, )).astype("float64"), 'Y': np.random.random((32, )).astype("float64") } self.outputs = {'Out': np.multiply(self.inputs['X'], self.inputs['Y'])} class TestElementwiseMulOp_broadcast_0(ElementwiseMulOp): def setUp(self): self.op_type = "elementwise_mul" self.inputs = { 'X': np.random.rand(2, 3, 4).astype(np.float64), 'Y': np.random.rand(2).astype(np.float64) } self.attrs = {'axis': 0} self.outputs = { 'Out': self.inputs['X'] * self.inputs['Y'].reshape(2, 1, 1) } class TestElementwiseMulOp_broadcast_1(ElementwiseMulOp): def setUp(self): self.op_type = "elementwise_mul" self.inputs = { 'X': np.random.rand(2, 3, 4).astype(np.float64), 'Y': np.random.rand(3).astype(np.float64) } self.attrs = {'axis': 1} self.outputs = { 'Out': self.inputs['X'] * self.inputs['Y'].reshape(1, 3, 1) } class TestElementwiseMulOp_broadcast_2(ElementwiseMulOp): def setUp(self): self.op_type = "elementwise_mul" self.inputs = { 'X': np.random.rand(2, 3, 4).astype(np.float64), 'Y': np.random.rand(4).astype(np.float64) } self.outputs = { 'Out': self.inputs['X'] * self.inputs['Y'].reshape(1, 1, 4) } class TestElementwiseMulOp_broadcast_3(ElementwiseMulOp): def setUp(self): self.op_type = "elementwise_mul" self.inputs = { 'X': np.random.rand(2, 3, 4, 5).astype(np.float64), 'Y': np.random.rand(3, 4).astype(np.float64) } self.attrs = {'axis': 1} self.outputs = { 'Out': self.inputs['X'] * self.inputs['Y'].reshape(1, 3, 4, 1) } class TestElementWiseMulSelectedRows(OpTest): def setUp(self): self.rows = [0, 1, 2, 3, 4, 5, 6] self.feature = 12 self.height = 100 self.input_shape = (len(self.rows), self.feature) def prepare_input(self, scope, place): self.input = { "X": np.random.random(self.input_shape).astype("float32"), "Y": np.random.random(self.input_shape).astype("float32") } def init_input(in_name): x_selected_rows = scope.var(in_name).get_selected_rows() x_selected_rows.set_height(self.height) x_selected_rows.set_rows(self.rows) x_array = self.input[in_name] x_tensor = x_selected_rows.get_tensor() x_tensor.set(x_array, place) init_input("X") init_input("Y") def create_out_selected_row(self, scope): return scope.var('Out').get_selected_rows() def check_result(self, out_selected_rows): assert out_selected_rows.height() == self.height assert out_selected_rows.rows() == self.rows out_tensor = np.array(out_selected_rows.get_tensor()) assert out_tensor.shape == self.input_shape def check_with_place(self, place): scope = core.Scope() self.prepare_input(scope, place) out_selected_rows = self.create_out_selected_row(scope) out_selected_rows.set_height(0) out_selected_rows.set_rows([]) elementwise_mul = Operator("elementwise_mul", X='X', Y='Y', Out='Out') elementwise_mul.run(scope, place) self.check_result(out_selected_rows) def test_elewisemul_with_selected_rows_input(self): places = [core.CPUPlace()] for place in places: self.check_with_place(place) if __name__ == '__main__': unittest.main()