/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include #include #include #include // NOLINT #include "google/protobuf/text_format.h" #include "gtest/gtest.h" #include "paddle/fluid/distributed/ps.pb.h" #include "paddle/fluid/distributed/table/common_dense_table.h" #include "paddle/fluid/distributed/table/common_sparse_table.h" #include "paddle/fluid/distributed/table/sparse_geo_table.h" #include "paddle/fluid/distributed/table/table.h" namespace paddle { namespace distributed { // CommonSparseTable + SSGD TEST(CommonSparseTable, SGD) { int emb_dim = 10; int trainers = 2; TableParameter table_config; table_config.set_table_class("CommonSparseTable"); FsClientParameter fs_config; Table *table = new CommonSparseTable(); TableAccessorParameter *accessor_config = table_config.mutable_accessor(); accessor_config->set_accessor_class("CommMergeAccessor"); CommonAccessorParameter *common_config = table_config.mutable_common(); common_config->set_name("sgd"); common_config->set_table_name("sgd_test_table"); common_config->set_trainer_num(trainers); common_config->add_params("Param"); common_config->add_dims(emb_dim); common_config->add_initializers("uniform_random&0&-1.0&1.0"); // param common_config->add_params("LearningRate"); common_config->add_dims(1); common_config->add_initializers("fill_constant&1.0"); // learning_rate auto ret = table->initialize(table_config, fs_config); ASSERT_EQ(ret, 0); // pull parameters for create and check std::vector init_keys = {0, 1, 2, 3, 4}; std::vector init_values; init_values.resize(init_keys.size() * emb_dim); table->pull_sparse(init_values.data(), init_keys.data(), init_keys.size()); // for check std::vector total_gradients; total_gradients.resize(init_keys.size() * emb_dim); memset(total_gradients.data(), 0, sizeof(float) * total_gradients.size()); // push gradient std::vector> trainer_keys; std::vector> trainer_gradient_values; trainer_keys.resize(trainers); trainer_gradient_values.resize(trainers); float start = 0.0; for (int i = 0; i < trainers; i++) { trainer_keys[i] = init_keys; for (size_t j = 0; j < trainer_keys[i].size(); j++) { auto id = trainer_keys[i][j]; for (int k = 0; k < emb_dim; k++) { trainer_gradient_values[i].push_back(start); total_gradients[id * emb_dim + k] += start; start += 0.1; } } } std::shared_ptr<::ThreadPool> pool_ = std::make_shared<::ThreadPool>(trainers); std::vector> task_status; for (int i = 0; i < trainers; i++) { auto &push_keys = trainer_keys[i]; auto &push_values = trainer_gradient_values[i]; auto task = [table, &push_keys, &push_values] { table->push_sparse(push_keys.data(), push_values.data(), push_keys.size()); }; task_status.push_back(pool_->enqueue(std::move(task))); } for (auto &status : task_status) { status.wait(); } std::vector pull_values; pull_values.resize(init_keys.size() * emb_dim); table->pull_sparse(pull_values.data(), init_keys.data(), init_keys.size()); for (size_t i = 0; i < init_values.size(); ++i) { auto update_val = init_values[i] - 1.0 * total_gradients[i]; ASSERT_TRUE(abs(update_val - pull_values[i]) < 1e-5); } } // CommonSparseTable + Adam TEST(CommonSparseTable, Adam) { int emb_dim = 10; int trainers = 2; float beta1 = 0.9; float beta2 = 0.999; float epsilon = 1.0e-8; TableParameter table_config; table_config.set_table_class("CommonSparseTable"); FsClientParameter fs_config; Table *table = new CommonSparseTable(); TableAccessorParameter *accessor_config = table_config.mutable_accessor(); accessor_config->set_accessor_class("CommMergeAccessor"); CommonAccessorParameter *common_config = table_config.mutable_common(); common_config->set_name("adam"); common_config->set_table_name("adam_test_table"); common_config->set_trainer_num(trainers); common_config->add_params("Param"); common_config->add_dims(emb_dim); common_config->add_initializers("uniform_random&0&-1.0&1.0"); common_config->add_params("LearningRate"); common_config->add_dims(1); common_config->add_initializers("fill_constant&1.0"); common_config->add_params("Moment1"); common_config->add_dims(emb_dim); common_config->add_initializers("fill_constant&0.0"); common_config->add_params("Moment2"); common_config->add_dims(emb_dim); common_config->add_initializers("fill_constant&0.0"); common_config->add_params("Beta1Pow"); common_config->add_dims(1); common_config->add_initializers("fill_constant&1.0"); common_config->add_params("Beta2Pow"); common_config->add_dims(1); common_config->add_initializers("fill_constant&1.0"); auto ret = table->initialize(table_config, fs_config); ASSERT_EQ(ret, 0); // pull parameters for create and check std::vector init_keys = {0, 1, 2, 3, 4}; std::vector init_values; init_values.resize(init_keys.size() * emb_dim); table->pull_sparse(init_values.data(), init_keys.data(), init_keys.size()); // push gradient std::vector> trainer_keys; std::vector> trainer_gradient_values; trainer_keys.resize(trainers); trainer_gradient_values.resize(trainers); float start = 0.0; for (int i = 0; i < trainers; i++) { trainer_keys[i] = init_keys; for (size_t j = 0; j < trainer_keys[i].size(); j++) { for (int k = 0; k < emb_dim; k++) { trainer_gradient_values[i].push_back(start); start += 0.1; } } } for (int i = 0; i < trainers; i++) { auto &push_keys = trainer_keys[i]; auto &push_values = trainer_gradient_values[i]; table->push_sparse(push_keys.data(), push_values.data(), push_keys.size()); } std::vector pull_values; pull_values.resize(init_keys.size() * emb_dim); table->pull_sparse(pull_values.data(), init_keys.data(), init_keys.size()); for (size_t idx = 0; idx < init_keys.size(); idx += emb_dim) { std::vector beta1_pow, beta2_pow, lr, mom1, mom2, param; beta1_pow.push_back(beta1); beta2_pow.push_back(beta2); lr.push_back(1.0); for (int i = 0; i < emb_dim; i++) { mom1.push_back(0.0); mom2.push_back(0.0); param.push_back(init_values[idx + i]); } for (int i = 0; i < trainers; i++) { auto lr_ = lr[0] * sqrt(1 - beta2_pow[0]) / (1 - beta1_pow[0]); for (int j = 0; j < emb_dim; j++) { mom1[j] = beta1 * mom1[j] + (1 - beta1) * trainer_gradient_values[i][idx + j]; mom2[j] = beta2 * mom2[j] + (1 - beta2) * trainer_gradient_values[i][idx + j] * trainer_gradient_values[i][idx + j]; param[j] = param[j] - lr_ * (mom1[j] / (sqrt(mom2[j]) + epsilon * sqrt(1 - beta2_pow[0]))); } beta1_pow[0] *= beta1; beta2_pow[0] *= beta2; } for (int i = 0; i < emb_dim; i++) { ASSERT_TRUE(abs(param[i] - pull_values[idx + i]) < 1e-5); } } } } // namespace distributed } // namespace paddle