- 20 6月, 2019 1 次提交
-
-
由 qingqing01 提交于
* Update backward appending stragety to support double backward and fix some bug. (#18104) * Update backward.py: - If there is no input grad var in all outputs of previous ops, do not append this op into graph. - Only apply this stragety when double backward. * Update some double backward op. * Update sum_op to judge whether a tensor is empty by numel or IsInitialized().
-
- 14 5月, 2019 1 次提交
-
-
由 Kaipeng Deng 提交于
* add elementwise_add_grad_grad op. test=develop * use defined GradMaker. test=develop
-
- 10 5月, 2019 1 次提交
-
-
由 qingqing01 提交于
* Add conv2d_grad_grad_op * Extracte the cuDNN conv algo searching code in conv_cudnn_helper.h. - Now use it in conv2d_grad_grad. - Will simply the searching code in conv2d and conv2d_grad in next PR. * Enhance and fix bug in unit testing of gradient_checker. * Support to fetch empty variables,return None in Python.
-
- 23 4月, 2019 1 次提交
-
-
由 qingqing01 提交于
Support backward of backward for Relu and add a new gradient checker by comparing theoretical and numerical Jacobian. (#16862) * Support backward of backward and a new gradient checker * Rename decorators.py to decorator_helper.py, since Python on Windows CI has decorators package. 1. Add ReluDoubleGradMaker when register relu_grad. 2. Add a new gradient checker by comparing theoretical and numerical Jacobian. Check double gradients by double_grad_check.
-